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Dr. Jérémy Parriaux, Dr. Meriem Halimi, Dr. Fengwei Chen, Dr.

Julien Schorsch, Dr. Boyi Ni, Dr. Mahmoud Abdelrahim and (fu-

tures) Dr. Brandon Dravie, Dr. Artuto Padilla and Dr. Yusuf Bhu-

jwalla, which i had the very good fortune to meet at ESSTIN.

I would like also to thank the Dr. Francisco Lopez Estrada and the

also future doctors Dr. Carolina Abscheidt and Dr. Eber Espino for

the very nice moments entre bastidores.

Finally, I would like to thank my parents Hernán and Cecilia for their

support, their prayers and love from that far away. My baby sister

and my baby brother Laudy and Manuelito, for their unconditional

love. I like to thank Henry Carrillo for his invaluable support and

without whom anything of this would be even possible.

I thank you all (and all who i may have forgotten to mention). You

all must know that every one of you was crucial in the success of this

work.



Résumé

Formulation du probléme

La recherche de la meilleure utilisation de l’énergie pour un véhicule donné revient

à déterminer comment ce véhicule doit être conduit, de façon à minimiser la

quantitée d’énergie utilisée pour un trajet donné en un temps donné. Pour un

véhicule automobile évoluant dans le trafic, par nature changeant et imprévisible,

le recherche d’une telle stratégie de conduite implique la prise en compte de

contraintes en temps réel.

Cette thèse est principalement consacrée à ce problème, aussi bien dans les

aspects théoriques que pratiques, pour le cas de Vir’Volt (Figure 1), un prototype

électrique participant à des compétitions de véhicules à basse consommation. Par-

ticulièrement, le prototype Vir’Volt participe à l’European Shell Eco-Marathon,

course européenne où le vainqueur aura parcouru une distance donnée à une

vitesse moyenne imposée en utilisant la quantité minimale d’énergie. Plusieurs

Figure 1: Le Vir’Volt prototype lors de l’European Shell Eco-Marathon 2011.

approches sont successivement étudiées dans la solution de ce problème.
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Calcul hors-ligne de la stratégie de conduite

En première approche, on considère un modèle linéaire en temps discret. Ce

modèle est obtenu par identification expérimentale (Figure 2). On déduit en-

Figure 2: Identification expérimentale.

suite du modèle, après optimisation hors-ligne, une stratégie de conduite à faible

consommation correspondant à un parcours optimal (stratégie de conduite opti-

male). Une Commande Prédictive (MPC) est implémentée dans le véhicule pour

suivre, en temps réel, cette trajectoire. La commande prédictive prend en compte

l’état réel du véhicule, et l’écart à la position idéale, ainsi que des contraintes im-

posées en temps réel (correspondant par exemple à des limitations de vitesse en

entrée de virages ou lors de densification du trafic). De manière très classique, la

MPC proposée consiste à calculer, à chaque pas de temps, une commande per-

mettant d’amener le système dans un ensemble invariant (ici: un polytope) où

une commande par retour d’état linéaire garantira la stabilité (Figure 3).

Transformation homothétique de l’ensemble invariant

Du fait du caractère variable des contraintes, un tel ensemble invariant varie et

doit être recalculé à chaque pas de temps. La principale nouveauté consiste en un

artifice destiné à alléger considérablement la charge de calcul: l’ensemble invari-

ant retenu sera l’image par une homothétie (de rapport variable) d’un ensemble

invariant fixe calculé hors-ligne (Figure 4).

Le calcul de la commande revient essentiellement à déterminer, à chaque pas

de temps, le rapport de cette homothétie. L’algorithme qu’on en déduit est suff-

isamment léger pour être implémenté sur un micro-contrôleur embarqué. Sur un
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Figure 3: Ensemble invariant polytopique Xf .

Figure 4: Le nouvel ensemble invariant est l’image par une homothétie d’un
ensemble invariant fixe calculé hors-ligne.

plan théorique, on montre la stabilité et la convergence de la commande prédictive

variant dans temps.

MPC pour systèmes Linéaires à Paramètre Variable (LPV)

avec des ensembles invariants ellipsöıdales et Fonctions de

Lyapunov Dépendantes de Paramètre (PDLF)

Dans une deuxième étape, pour mieux prendre en compte les caractéristiques non

linéaires du système et profiter de la nature linéaire de la commande prédictive,
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on considère un modèle LPV (Linéaire à Paramètre Variable) en temps dis-

cret. Différentes approches de construction d’une MPC sont envisagées. Les

méthodes de calcul de l’ensemble invariant ellipsöıdal, reposant sur des Inégalités

Matricielles Linéaires (LMI), sont testées, en-ligne ou avec report partiel de cal-

culs hors-ligne. Le meilleur compromis pour un calcul embarqué est atteint

avec un calcul hors-ligne et l’utilisation d’une Fonction de Lyapunov Dépendant

de Paramètre (PDLF). La forme explicite de la commande permet une anal-

yse complète de sa stabilité malgré la non-linéarité du modèle. Les résultats

expérimentaux (avec implémentation sur le prototype et calcul de la commande

sur micro-contrôleur (Figure 5)) montrent de bonnes performances de suivi de

trajectoire pour de petites perturbations.

Figure 5: Commande embarqée sur micro-contrôleur.

Calcul en-ligne de la stratégie de conduite

Les deux premières approches avaient pour défaut d’être des modèles en temps

discret. Les moyens de calcul embarqué volontairement limités ne permettent que

des calculs à horizon court. Mais une précision acceptable du modèle suppose des

pas de temps souvent petits, et donc des horizons lointains dans les calculs de

MPC pour garantir la stabilité. Le rendement très mauvais à bas couple im-

pose des stratégies de commande de type on-off, avec la difficulté supplémentaire

que chaque démarrage du moteur suppose de remettre en mouvement la chane
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de transmission, ce qui entrane une petite mais non négligeable consommation

d’énergie. Ce caractère non lisse du coût est en général très difficile à pren-

dre en compte d’un point de vue numérique. On propose ici une commande

adaptative, à horizon variable, basée sur une heuristique très simple consistant

à faire osciller la vitesse du véhicule entre deux paliers de vitesse. L’horizon

d’optimisation dépend de la dynamique, identifiée en temps réel. Le caractère

adaptatif confère une grande stabilité. L’implémentation est possible pour un

coût calculatoire extrêmement faible (la puissance moyenne consommée par le

micro-contrôleur utilisé est de l’ordre de 10 mW). Cette méthode a été utilisée

pour la commande entièrement automatique du véhicule (avec contrôle de la po-

sition par GPS (Figure 6)) lors de la compétition officielle en 2014, pour des

performances énergétiques comparables aux résultats des pilotes humains.

Figure 6: Commande entièrement automatique du véhicule lors du Shell Eco-
Marathon 2014.
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Abstract

The main objective of this thesis is to propose controlled driving strategies for

an electric vehicle prototype that must achieve a minimal energetic consumption.

The prototype under consideration is named Vir’volt and is involved every year in

the Shell Eco-Marathon European race. The main issue, which can be considered

as the guiding principle of this work, is to propose controlled driving strategies

which can be embedded into the digital devices of the vehicle. As a result, the

driving strategies must be compatible with real time constraints, limited memory

and computational capacities of the electronic equipment. The computation of

the strategies must require itself a low power consumption.

First, a suitable nonlinear model of the electric vehicle is obtained. The

model involves physical equations with parameters estimated from experiments

conducted on the vehicle. By suitable, it is meant a model fulfilling the trade-off

complexity/precision needed for real-time control purposes.

The first overall approach consists in deriving, first, an optimal driving strat-

egy by solving off-line an optimization problem. The problem amounts to min-

imizing a cost subject to constraints such as the dynamics of the vehicle, the

physical constraints on the vehicle and the race (track profile and length, max-

imal duration of a run, etc.). As a second step, robust tracking methods of the

optimal driving strategy are proposed. Mainly motivated by their robustness and

constraint handling properties, several Model Predictive Control (MPC) tracking

strategies are detailed.

A MPC tracking strategy based on a linearised model around an operating

point is applied to the vehicle in simulation. Time-invariant constraints in the

form of polytopic sets, are considered on the input and the state. The asymptotic

stability of the control law is guaranteed by resorting to an invariant set as an

admissible terminal constraint. Then, motivated by the peculiarities induced by
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the tracking problem, time-varying constraints are considered, again in a poly-

topic form. The complexity of the tracking strategy is preserved, compared to the

time-invariant case, by resorting to an homothetic transformation of a nominal

invariant set, guaranteeing the asymptotic stability. The resulting MPC tracking

strategy is assessed on the model of the Vir’volt vehicle in simulation.

To capture the nonlinearities of the dynamics, a Linear Parametric Varying

(LPV) model is considered. A MPC strategy for LPV systems is proposed. The

contribution that must be pointed out is that the approach is well suited for

real-time applications, since it does not involve the on-line solution of any Lin-

ear Matrix Inequality (LMI) in the computation of the control law. The LMIs

guarantee the stability and the constraints fulfilment. The performances of the

approach, in terms of real-time applicability and robustness, are tested with suc-

cess on the benchmark for the Vir’volt vehicle.

The principle of the second approach differs from the first one in the sense

that the optimal driving strategy is computed on-line so that it can be adapted

to a time-varying context. This is precisely the case when there is traffic jam

during the race and when phenomena such as wind, rain and path irregularities

are considered. The practical consideration that the efficiency of the power con-

verter may not be optimal on all the operating range is also taken into account.

This motivates an on-off strategy. The resulting on-off adaptive strategy requires

an identification performed on-line of the model of the vehicle and of the distur-

bances. The robust adaptive control is embedded in a dsPIC device on-board of

the Vir’volt vehicle, and is tested with success during the Shell Eco-Marathon

2014.
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HÛ∆
Characteristic matrix of the hyperplane representation

of the polytope Û∆.
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Chapter 1

General Introduction

In the field of transportation, the research on energy efficiency has been carried

out for few decades by the automotive industry, where one of the main require-

ments is to reduce harmful emissions. A solution to tackle this problem is the

implementation of an alternative energy source (electric, solar, hydrogen, fuel,

etc.). The main issue is the problem of how the energy source must be used in

order to maximize the energy efficiency [61, 18]. The main objective is to reduce

the energetic consumption.

Achieving a low consumption requires the solution of three central tasks: the

modelling of the problem, the computation of a low consumption strategy, and

finally the real-time implementation [61]. First, a suitable model of the vehicle

must be obtained. Secondly, and of special interest, is the problem of how us-

ing different energy sources, one or several, so that the energy efficiency can be

maximized. This particular problem can be rephrased as how the vehicle must

be driven so that the minimum quantity of energy is used, this is the optimal

driving strategy [61, 60, 18]. The reference driving trajectory must be derived

in terms of expected position and velocity all along the path to run. The first

and second tasks can be performed off-line. In the third and final task, a pow-

erful tracking strategy must be designed to guarantee that the driving strategy

is accomplished. The tracking strategy must cope with the problem constraints,

taking into account the inherent limitations of the real-time implementation, such

as computing time and memory resources [61, 50].

The process described above, from the modelling and description of the prob-
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1. General Introduction

lem to the real-time implementation, can be carried out for a particular task,

and tested rigorously within academic frameworks such as those provided by sus-

tainable vehicle competitions all around the world. This competitions such as

The Shell Eco-Marathon [3], The Zero race [7] (now The WAVE Trophy [6]), The

EcoCar 2 [1], among others, invite industries, universities and research groups to

innovate, in a regular basis, in solutions to the problem of sustainable transporta-

tion and the efficient use of the different energy sources.

1.1 The European Shell Eco-Marathon

The European Shell Eco-Marathon is a race involving ecological and economical

vehicles. It brings together nearly 200 teams from high schools and universities

coming from all over Europe (See Fig. 1.1). The aim of the contest is to promote

the research and innovation in the field of sustainable and environmental trans-

portation. The principle of the race is to drive a fixed number of kilometres in a

limited range of time with the least possible consumption of fuel.

Figure 1.1: Shell Eco-Marathon Europe 2014. This year participated 198 teams
from 27 countries. Picture taken from the Shell Eco-Marathon 2014 website in
Flickr [5].

The Shell Eco-Marathon has its origins back in 1939 in a Shell research labora-

tory in Illinois, USA. The race started as a competition between partner scientists

2



1. General Introduction

trying to drive the longer distance with the least quantity of fuel. Back then the

record was 21 kilometres driven with only one litre of fuel. Several years later,

the European Shell Eco-Marathon, as we know it today, begun in France in 1985

with a record of 680km/l [61].

Since the year 2012, the European Shell Eco-Marathon race has been held

in Rotterdam, The Netherlands, in the Ahoy circuit (see Fig. A.1). The main

features of the Ahoy circuit are summarized in Table 1.1. For further details on

the dimensions and features of the Ahoy circuit, please refer to Appendix A.

FINISH LANE

Track Length: 1626 m

10 laps: 16117 m in 39 minutes max 

CORRECT WAY 
ON TRACK: 
CLOCKWISE

STOP POINT FOR  
URBANCONCEPT  

START LANE

ROTTERDAM TRACK 2014

Figure 1.2: Rotterdam’s Ahoy circuit 2014 [3].

Table 1.1: Features of the Ahoy circuit.

Lap length 1.626km
Number of laps to make a run 10
Total distance 16.26km
Time allowed to the run 39min
Number of 90◦ turns 5

1.1.1 Categories of participation

There are six different categories of participation in the race, which are distin-

guished according to the source of energy used, as indicated in Table 1.2. The

teams are allowed to use only one of the energy sources indicated in Table 1.2 ac-

cording to the Shell Eco-Marathon rules available in [4]. Although each category

3



1. General Introduction

Table 1.2: Categories of participation in the Shell Eco-Marathon.

Energy source Measurement of the consumption

In
te
rn
al

C
om

b
u
st
io
n Gasoline kilometre per litre [km/l]

Diesel kilometres per litre [km/l]
Ethanol E100 kilometres per cubic meter of ethanol

[km/m3]
Shell GtL - Gas to Liquid kilometres per cubic meter of ethanol

[km/m3]
CNG - Compressed natural
gas (Pure methane)

kilometres per cubic meter of methane
[km/m3]

E
le
ct
ri
c

M
ob

il
it
y Battery Electric kilometres per kilowatt hour [km/kWh]

Hydrogen kilometres per cubic meter of hydrogen
[km/m3]

has its own expression of energy consumption, the final result is converter into

an equivalent measure in terms of kilometres per litre of fuel or diesel for com-

parison purposes. To compare, for example, the consumption in kilometres per

kilowatt hour with the consumption in kilometres per litre of fuel (Shell FuelSave

Unleaded 95) the following formula can be used

1km/kWh = 8.892km/l, (1.1)

assuming that the density of the fuel is 0.74616kg/l at 15◦C, and therefore the

energy of one litre of fuel is 32010kJ which is equivalent to 8.892kWh [4].

The vehicles must be fully designed and built by the teams themselves. For

each class of energy source, the vehicle can be a Prototype style vehicle or Ur-

banConcept style vehicle. The first ones are small vehicles of three or four wheels

and usually the driver is laying down (see Fig. 1.4a - 1.4c). The second ones are

bigger vehicles of four wheels and look like small commercial type passenger cars

(see Fig. 1.3d - 1.3f). Both of them are single-seater cars. In Table 1.3, the main

features of the two classes of vehicle are presented.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Prototype and UrbanConcept vehicles. (a) Prototype Gasoline. (b)
Prototype Battery Electric. (c) Prototype Hydrogen. (d) UrbanConcept Gaso-
line. (e) UrbanConcept Battery Electric. (f) UrbanConcept Hydrogen. Pictures
taken from the Shell Eco-Marathon 2014 website in Flickr [5].

Table 1.3: Prototype and UrbanConcept vehicle features [4].

Feature Prototype UrbanConcept
Number of wheels 3 or 4 4
Vehicle height ≤ 100cm ≥ 100cm and ≤ 130cm
Vehicle length ≤ 350cm ≥ 220cm and ≤ 350cm
Vehicle width ≤ 130cm ≥ 120cm and ≤ 130cm
Number of pilots 1 1
Weight of the pilot ≥ 50kg ≥ 70kg
Weight of the vehicle (without the pilot) ≤ 140kg ≤ 225kg
Space for luggage required No Yes
Luggage dimension (L×H×W) - 500× 400× 200mm

1.1.2 The Shell Eco-Marathon around the world

The Shell Eco-Marathon also exists in America and Asia. The Shell Eco-Marathon

Americas was launched in 2007 in the United States, involving teams from Canada

to Brazil. The Shell Eco-Marathon Asia started in 2010, in Malaysia [3]. In

Table 1.4, the Shell Eco-Marathon 2014 results for Electric Battery Prototype

5
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are presented.

Table 1.4: Best scores for Electric Battery Prototype 2014.

Event

Number of
paticipants
in the category Best score Team Country

Europe 28 1091.6km/kWh Graz University
of Technology

Austria

Asia 14 263.4km/kWh Rattanakosin
Technological
College

Thailand

Americas 10 537.2m/kWh Mater Dei High
School

United
States

1.2 The EcoMotionTeam

The EcoMotion Team (EMT) of the Ecole Supérieure des Sciences et Technologies

de l’Ingénieur de Nancy (ESSTIN) in France, has been involved in the European

Shell Eco-Marathon race from the year 2000 with prototypes in the categories

gasoline, hydrogen and battery electric. In Fig. 1.4 are presented several of the

prototypes developed by the EMT. The performances of the EMT are presented

since the year 2000 in Table 1.5 .

(a) (b) (c)

Figure 1.4: Prototypes developed by the EMT. (a) Mirabelle Gasoline Prototype,
2004. (b) HydrogESSTINe Hydrogen Prototype, 2008. (c) Vir’Volt Battery
Electric Prototype, 2014.
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Table 1.5: Performances of the EMT in the Shell Eco-Marathon Europe since the
year 2000 [2] (*no ranked result).

Year City Category Vehicle Performance Rank

2000 Castellet

(FRA)

Gasoline Pro-

totype

ESSTIN1 330km/l 80th/150

2001 Nogaro

(FRA)

Gasoline Pro-

totype

Ern’ESSTIN 288km/l 99th/150

2002 Nogaro

(FRA)

Gasoline Pro-

totype

Destinée 182km/l 82th

2003
Nogaro

(FRA)

Gasoline Pro-

totype

Mirabelle 812km/l 30th

Hydrogen

Prototype

Combustine * *

2004
Nogaro

(FRA)

Gasoline Pro-

totype

Mirabelle 810km/l 30th

Hydrogen

Prototype

Combustine 1929km/l 2nd

2005 Nogaro

(FRA)

Hydrogen

Prototype

HydrogESSTINe 1894km/l 3rd/9

2006
Nogaro

(FRA)

Hydrogen

Prototype

HydrogESSTINe 2784km/l 1st/9

Solar Proto-

type

HélioSSTINe 191626J 2nd/6

2007
Nogaro

(FRA)

Hydrogen

Prototype

HydrogESSTINe * *

Solar Proto-

type

HélioSSTINe * *

2008 Nogaro

(FRA)

Hydrogen

Prototype

HydrogESSTINe 2509, 12km/l 4th

2009 Lausitz

(DEU)

Hydrogen

Prototype

HydrogESSTIN e 2814km/l 4th

7
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2010 Lausitz

(DEU)

Hydrogen

Prototype

HydrogESSTINe 2379km/l 5th

2011 Lausitz

(DEU)

Battery Elec-

tric Prototype

Vir’Volt 532km/kWh 2nd/12

2012 Rotterdam

(NLD)

Battery Elec-

tric Prototype

Vir’Volt 440.5km/kWh 8th/21

2013 Rotterdam

(NLD)

Battery Elec-

tric Prototype

Vir’Volt 638.5km/kWh 6th/27

Additionally to the ranking obtained in the different categories of energy

sources, the EMT has also won several off-track awards. The off-track awards

are given in areas such as the technical innovation, the safety, the communication

and the pedagogic process held by the students in the team (National education

award). In Table 1.6 are presented the off-track awards won by the EMT since

its beginnings in the year 2000.

Table 1.6: Off-track awards won by the EMT since the year 2000 [2].

Year Off-track award
2003 1st place of the National education award
2004 2nd place of the Technical Innovation award

2005
2nd place of the Communication award
3th place of the Safety award

2006
2nd place of the Technical Innovation award
2nd place of the National education award
3rd place of the Communication award

2008
1st place of the Technical Innovation award
1st place of the Safety award

2009 1st place of the Technical Innovation award
2010 3th place of the Safety award
2013 2nd place of the Safety award
2014 1st place of the Safety award

8
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1.3 Motivation of the work

Initially, the Driving strategy proposed by the EcoMotionTeam was so far a stop-

and-go one, that merely reduced to manually turn on or off the engine by the

pilot according to whether the vehicle was going up or down, or to drive around

an average value, the efficiency of the converter/motor being better when work-

ing at full regime. It was typically the strategy chosen in 2011 when the race

was held in Lausitz, Germany. Indeed, the Lausitz’s track could be considered

as a straight line since there was no deceleration or complex curves. Hence, the

driving instructions corresponding to this simple strategy could be easily followed

by the pilot. The new and ambitious challenges in terms of consumption require

more complex driving strategies and the accuracy of the tracking is decisive in

the final performances. The main objective of this work is to propose robust low

consumption driving strategies for the Vir’volt prototype. The main issue is the

capability of those controlled driving strategies to be embedded into the digital

devices available in the vehicle. The synthesis of the embedded controllers is

subject to constraints such as the limited memory and computational capacities

of the electronic equipment.

1.4 Outline

The present work is organized as follows.

• In Chapter 2, a model of the vehicle dynamics is obtained. The unknown

parameters involved in the vehicle dynamics are estimated using parameter

identification from experimental data. The identified dynamics is used to

derive an optimal driving strategy that is intended to be tracked on-line

during the driving task. The tracking problem is formulated using either a

linearised model around an operating point or a Linear Parametric Varying

(LPV) representation. A benchmark, designed during the thesis and used

to test the performances of the tracking strategies is described.

• In Chapter 3, background on the problem of the MPC-based tracking strat-
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1. General Introduction

egy for LTI discrete-time systems is recalled. The tracking task is subject

to time-invariant polytopic constraints on the input and/or the state. The

asymptotic stability of the control law is guaranteed by resorting to invari-

ant set theory. The performances of the MPC tracking strategy are assessed

with first, a numerical example and then, with the Vir’volt vehicle.

• In Chapter 4, the problem of MPC tracking problem subject to time-varying

polytopic constraints is presented. The asymptotic stability of the control

law is guaranteed by a homothetic time-varying invariant set. The real-

time capacity of the resulting MPC tracking strategy is assessed again with

a numerical example and then with the Vir’volt vehicle.

• In Chapter 5, the problem of the MPC tracking for a Linear Parametric

Varying (LPV) representation of the vehicle is proposed. The LPV descrip-

tion allows to capture the nonlinearities of the dynamics. In this chapter,

a new explicit MPC strategy for LPV systems is developed. The stability

is guaranteed by the use of a Parameter Dependent Lyapunov Function

(PDLF) to take into account the time-varying parameter to reduce the con-

servatism. The contribution here is to propose an approach well suitable

for real-time applications, since this approach does not involve the on-line

solution of any Linear Matrix Inequality (LMI) in the computation of the

control law. The performances of the approach are tested on the benchmark

for the Vir’volt vehicle.

• In Chapter 6, a robust real-time adaptive control is developed for the ve-

hicle. This approach is presented as a complementary scheme of driving

strategy, in which the dynamics of the vehicle is identified on-line and the

derived driving strategy is an on-off strategy. The on-line identification of

the dynamics guarantees that the disturbances are taken into account. The

on-off driving strategy is computed on-line according to the identified dy-

namics, and aims to reduce the energetic consumption required to perform

the task. The robust adaptive control has been embedded in a dsPIC device

and has been tested during the European Shell Eco-Marathon 2014.

• Finally, general conclusions and perspectives are presented in Chapter 7.
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Chapter 2

The Low Consumption Vir’volt

Electric Vehicle

2.1 Introduction

The EcoMotionTeam has developed successive vehicles over the past 15 years.

The electric prototype considered in this work is named Vir’Volt and is the fifth

generation. This prototype, shown in Fig. 2.1, has been ranked 2nd, in 2011, in

the Battery Electric category among 12 others vehicles and 7th among the 100

participants of the European competition with a result of 532km/kWh (equivalent

to 4731km with one litre of fuel, calculated using (1.1)). The prototype is a three

Figure 2.1: The Vir’Volt prototype in the Shell Eco-Marathon 2011.

wheels vehicle. The direction is controlled by the front wheel. In the years 2011

and 2012, the propulsion was given by one of the two rear wheels. In the years

11



2. The Low Consumption Electric Vehicle

2013 and 2014, the propulsion is given by the front wheel. It can reach the speed

of 35km/h. The energy is provided by a 24V battery to an electric motor which

develops 0, 4Nm. The vehicle has many embedded electronics devices in order to

communicate with the pit stop. The total weight of the car is 40kg, the pilot

needs to weight at least 50kg according to the Shell Eco-Marathon rules. Thus,

the total mass of the vehicle is 90kg.

In this chapter, the full procedure performed to achieve a low consumption

strategy for the Vir’volt electric vehicle, intended to participate in the European

Shell Eco-Marathon, is presented. In Section 2.2, the modelling of the vehicle

is described. Parameter identification is used in order to estimate the unknown

parameters involved in the vehicle dynamics. In Section 2.3, the low consumption

strategy is detailed. This strategy indicates the vehicle velocity and the battery

current required to achieve the minimum energetic consumption with respect to

the position of the vehicle in the circuit. The driving strategy is the result of an

optimization problem and it is intended to be tracked during the driving task. In

Section 2.4, a discrete-time model of the vehicle dynamics is obtained in order to

allow the design of a discrete-time control law that will be embedded on-board in

a digital device. In Section 2.5, the tracking problem is formulated. The nonlinear

tracking error is derived using first, a linearised model around an operating point

and, next, a Linear Parametric Representation (LPV). Finally, is Section 2.6,

the benchmark which will be used for testing the performances of the different

control strategies is described. The benchmark allows to emulate the vehicle and

the circuit profile during the race.

2.2 The Vir’volt prototype

2.2.1 Electric vehicle dynamics

The dynamics of the vehicle can be described in terms of the force of trac-

tion Ftraction[N], the external forces due to the aerodynamics Faerodynamics[N],

the rolling (contact wheel-ground) resistance Frolling[N], and the slope resistance

Fslope[N] due to the vehicle’s weight and the road slope θ[rad] (see Fig. 2.2) [60, 32].

All this forces are related by Newton’s laws of motion involving the mass m[kg]

12
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of the vehicle and its acceleration dx2(t)
dt

[m/s2] as follows

m
dx2(t)

dt
= Ftraction(t)− Faerodynamics(t)− Frolling(t)− Fg(t), (2.1)

with x2(t)[m/s] the velocity of the vehicle.

Figure 2.2: Free-body diagram.

The aerodynamic force Faerodynamics is given in terms of the frontal area Af [m
2]

of the vehicle, the aerodynamic drag coefficient Cd and the air density ρ[kg/m3].

Thus,

Faerodynamics(t) =
1

2
ρCdAfx2(t)

2. (2.2)

The rolling force Frolling, for a road with variable slope θ[rad] (assumed positive

if the vehicle is going uphill and negative if it is going downhill), is given in terms

of the wheels rolling resistance coefficient Cr and gravitation acceleration g[m/s2],

as follows

Frolling(t) = mgCr cos(θ(t)). (2.3)

The gravitational force Fg due to the slope of the road and to the weight of the

vehicle reads

Fg(t) = mg sin(θ(t)). (2.4)

Finally, in the Vir’volt electric vehicle, the power-train configuration (see

Fig. 2.3) is composed by a Kypom 22.2V battery that feeds a DC Maxon 200Watt

motor which develops 0, 4Nm. The torque of the motor is transmitted to one of

the rear wheels by a torque coupler. Therefore, the traction force Ftraction is given

by

Ftraction(t) =
ηktgr
rw

Ibatt(t), (2.5)

13



2. The Low Consumption Electric Vehicle

with η = Im/Ibatt the efficiency of the power converter, kt = Tm/Im[Nm/A] the

motor constant given by the motor manufacturer (Im[A] is the motor current and

Tm[Nm] the motor torque), Ibatt[A] the battery current, gr the transmission gear

ratio and rw[m] the radius of the wheel.

Figure 2.3: Vir’volt Power train. Ibatt[A] and Im[A] are the battery and motor
currents, respectively. Tm[Nm] the motor torque. Pbatt[W], Pconv[W] and Pm[W]
are the power of the battery, the power of the converter and the motor power,
respectively. x2[m/s2] is the vehicle velocity.

By plugging (2.2), (2.3), (2.4) and (2.5) into (2.1), the following dynamics for

the vehicle is obtained:

m
dx2(t)

dt
=

ηktgr
rw

Ibatt(t)−
1

2
ρCdAfx2(t)

2 −mgCr cos(θ(t))−mg sin(θ(t)). (2.6)

Since the battery provides all the traction power, the battery current Ibatt is the

input of the system. The internal frictions have been neglected. The rotational

inertias in the power-train, such as the rotor inertia, have been neglected by being

smaller than the vehicle mass.

The distance x1[m] travelled by the vehicle, considered hereafter as the actual

position of the vehicle, reads

dx1(t)

dt
= x2(t). (2.7)

2.2.2 Parameter identification

In the actual real-time application, the dynamics (2.6) is partially unknown since

the values of the parameters η, Cr and the product CdAf are unknown. However,

the model can be identified from experimental data by performing a nonlinear

grey-box system identification [34] (see Fig. 2.4).
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Figure 2.4: Grey-box nonlinear identification.

2.2.2.1 Nonlinear grey-box identification

In System Identification, the mathematical model of a system can be estimated

by using three kinds of information: the knowledge on the structure of the model

(structural knowledge) or the physical knowledge obtained from first principles,

the data taken from intentional experiments performed on the system, and the

assumptions made over the validity of the model [34].

If the model of the system is found using only structural knowledge or physical

knowledge, then the model is a white-box model [34]. The white-box models are

usually described by differential equations. If the models are estimated to fit the

experimental data regardless of the structure of the model, then they are black-

box models [34]. In between are the grey-box models, in which the structure of

the model is known a priori and the data are used to estimate the values of the

unknown parameters of the model [34, 48].

The System Identification ToolboxTM of Matlab R©allows to perform grey-box

identification. The continuous-time nonlinear differential equations of the model

having been properly defined, the unknown parameters can be identified using

iterative Prediction-Error Minimization techniques (PEM) for continuous-time

linear and nonlinear models [48].

2.2.2.2 Parameter estimation

To perform the estimation of the unknown parameters η, Cr and CdAf , several

accelerating and decelerating tests were performed to collect the data required

for the identification process. In Fig. 2.5, the initial experimental data for a flat

path (θ = 0) used to perform the nonlinear grey-box identification are depicted
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in black.

The known parameters are kt = 0.0604Nm/A, gr = 8.5, m = 90kg, rw =

0.24m, ρ = 1.225kg/m3 and g = 9.81m/s2, and the known continuous-time non-

linear structure of the model is the one given by (2.6). Then, the parameters η,

Cr and the product CdAf have been identified with the PEM method. The best

fit to the experimental data has given

η = 0.97, CdAf = 0.1031m2 and Cr = 8.1549× 10−4. (2.8)

The parameters involved in the dynamics (2.6) are summed up in Table 2.1.

Table 2.1: Parameters involved in the electric vehicle dynamics (2.6).

Coeff. Description Value
m vehicle mass 90kg
η efficiency of the inverter 0.97
kt motor constant 0.0604Nm/A
gr transmission gear ratio 8.5
rw radius of the wheels 0.24m
ρ air density coefficient 1.225kg/m3

CdAf aerodynamic drag coefficient × vehicle frontal area 0.1031m2

g gravity acceleration coefficient 9.81m/s2

Cr rolling resistance coefficient 8.1549× 10−4

2.3 Low consumption driving strategy

The dynamics of the vehicle being fully identified, the problem of the energy-

management can now be addressed. The problem amounts to defining how using

the available energy sources so that the energy efficiency can be maximized. The

previous question can be rephrased as how the vehicle must be driven so that the

minimum quantity of energy is used during the driving task (a driving task can

be single or multiple repetitions of a prescribed circuit, or a common route [61]).

The answer to this questions is precisely the driving strategy [60].

Since the battery provides all the traction power (see Fig. 2.3), the problem of

the low consumption strategy becomes an electrical resource management prob-

16



2. The Low Consumption Electric Vehicle

80 100 120 140

6.5

7

7.5

8

8.5

t[s]

x
2
[m

/
s]

 

 

(a)

80 100 120 140
0

2

4

6

8

10

t[s]

I b
a
t
t
[A

]

(b)

Figure 2.5: Grey-box identification of the nonlinear dynamics (2.6) for a flat path.
(a) Velocity data. In black is the data used for the identification and in red is
the velocity response of the identified model. (b) Input data.

lem, where the energy level of the battery (only the discharging of battery being

taken into account) is the critical variable in the formulation of the optimization

problem that leads to the driving strategy solution [41, 61].

2.3.1 Energetic considerations

In a general way, the energy stored in the battery at time t can be expressed as

follows

Es(t) = Es(0)−
∫ t

0

Pbatt(τ)− Ploss dτ, (2.9)
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where Es(0) is the initial stored energy, Pbatt is the power delivered to the load

by the battery and Ploss are the battery losses [41]. Disregarding the losses, the

battery energy can be simply expressed in terms of the current flowing through

the battery Ibatt and the constant open circuit voltage Voc as [27, 41]

Es(t) = Es(0)−
∫ t

0

VocIbatt(τ) dτ. (2.10)

The dynamics of the energy in the battery can also be expressed in term of

the State of Charge of the battery. In [41], the State of Charge (SoC) of the

battery at time t is defined as the following relative energy level (scalar)

SoC(t) =
Es(t)

Emax

, (2.11)

where Emax is the energy capacity of the battery fully charged. The energy stored

in the battery at time t can also be expressed in terms of the battery voltage Voc

and the battery charge Q(t) (given by the ampere-hour battery capacity), i.e.

Es(t) = VocQ(t) and Emax = VocQmax (2.12)

where Qmax is the maximum charge capacity of the battery. By plugging (2.11)

and (2.12) into (2.10), the SoC remaining in the battery at time t from an initial

SoC value (SoC0) is expressed by [57, 27]

SoC(t) = SoC0 −
1

Qmax

∫ t

0

Ibatt(τ) dτ. (2.13)

The method presented in (2.13) to estimate the SoC value is known as Ampere-

hour-counting (Ah), and is very suitable for electric vehicle applications due to

the regular full charges before the driving cycles. In fact, as [57] highlights,

to avoid dealing with the battery ageing, the full SoC is considered when the

battery charge has not changed during the last two hours at constant voltage and

temperature.

From the right side of (2.10) and (2.13), it is clear that the lowest consumption,

or equivalently the highest energy left in the battery at the end of the task, is
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achieved if the minimum electric charge, i.e. the minimum integral I∗batt(t) of

battery current, is used to perform the driving task.

2.3.2 Optimization problem

In this section, we consider the off-line computation of the reference driving strat-

egy which must achieve the minimization of the energy consumption taking into

account some constraints due to the dynamics and to the race path.

For a prescribed circuit, considered as a succession of curves and straight lines

(see Fig. 2.6), the driving strategy is a finite collection of triplets (x∗
1(t), x

∗
2(t), I

∗
batt(t)),

where x∗
2(t) corresponds to the required velocity assigned to the position x∗

1(t) in

the circuit at time t, such that the minimal consumption is achieved.

Figure 2.6: Example of a track with straight lines and curves. li[m] is the length
of the i-th straight line and rcurvej [m] is the radius of the j-th curve.

2.3.2.1 Constraints of the Optimality problem

The search for the driving strategy is an optimization problem which, given the

model of the vehicle, the road profile (slope, curves, straight lines, etc.) and the

constraints in terms of maximum velocity allowed at each curve, maximum time
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of the race, and total number of kilometres, must provide (x∗
1(t), x

∗
2(t), I

∗
batt(t)) at

time t. The optimization problem must consider the following constraints:

• The maximum time tfmax
[s] allowed to complete the race.

• The total distance x1total [m] to run.

• The maximum battery current Ibattmax
[A].

• The maximum speed x2max
[m/s2] for the vehicle.

• The limits of the centrifugal force Fc[N].

In a curve, the centrifugal force Fc(N) over the car is Fc = m(x2curve)
2/rcurve, with

rcurve[m] the radius of the curve (see Fig. 2.6) and x2curve [m/s2] the velocity of the

vehicle in the curve. This force must not be larger than the total frictions forces

wheel-road Ft[N] to prevent the car slipping over, i.e. x2curve ≤
√

Ftrcurve/m [60].

Notice that the constraint over the velocity x2curve in the curves is concerned

exclusively to the position x1 where there is precisely a curve, otherwise the

constraint is only x2 ≤ x2max. As a result, one has

x2(t) ≤ x2max, if the vehicle is in a straight line,

x2(t) ≤
√

Ftrc/m ≤ x2max, if the vehicle is in a curve.
(2.14)

The optimality problem that includes the aforementioned constraints and that

leads to the driving strategy for driving through a known path in a finite time

tf , with the minimum electrical consumption, is stated in the following.
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Optimal control problem 1

min
I∗
batt

, x∗

1, x
∗

2, tf

∫ tf
0

Ibatt(t) dt

s.t. (2.6),

(2.7),

x1(0) = 0,

x2(0) = 0,

tf ≤ tfmax
,

x1(tf ) = x1total ,

0 ≤ x2(t) ≤ x2max
, ∀t ≤ tf ,

(2.14),

Ibatt(t) ∈ [0, Ibattmax
], ∀t ≤ tf .

(2.15)

The optimal values of the control input I∗batt(t) and the optimal trajectory x∗
2(t)

are solution of the problem (2.15) for a given position x∗
1(t). To solve (2.15)

involving the constraints (2.14), the optimality problem (2.15) is represented as

a multi-phase optimality problem, as detailed in next subsection.

2.3.2.2 The Multi-phase Optimality problem

To include appropriately the constraints (2.14) in the solution of the optimality

problem (2.15), it is divided in consecutive phases of straight lines and curves,

according to the circuit shape. For each phase, the problem (2.15) is solved with

the corresponding constraint (2.14), depending on whether the vehicle is in a

curve or in a straight line.

Consider for example the road in Fig. 2.6, with four straight lines and four

curves. Then, eight consecutive phases are obtained for one lap. The optimality

problem (2.15) is expressed as a multi-phase optimality problem of size Pmp = 8

i.e.

min

∫ tf

0
Ibatt(t) dt = min

Pmp
∑

j=1

∫ t
(j)
fin

t
(j)
ini

Ibatt(t) dt, (2.16)

with Pmp the number of consecutive phases, t
(j)
ini the time in which the j-th phase

starts, and t
(j)
fin the time in which the j-th phase finishes, with

∑Pmp

n=1(t
(j)
fin− t

(j)
fin) =
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tf [36, 58]. The constraints (2.14) are rewritten as

x2(t) ≤ x2max if the j-th phase is a straight line,

x2(t) ≤
√

Ftrc/m if the j-th phase is a curve.
(2.17)

The GPOPS ToolboxTM of Matlab R©, allows to solve Multi-phase optimal control

problems for linear and nonlinear dynamics, in continuous-time or discrete-time

[36, 58]. For this purpose, the following must be properly defined for each phase

of the track

• The dynamics of the system given by (2.6) and (2.7).

• The cost functional as in (2.16).

• The dimensions of each phase (the length of the straight lines and the radius

and angle of each curve).

• The optimization constraints.

The present work focuses in the Rotterdam’s Ahoy circuit, where the race took

place in the years 2012 and 2013. In this circuit five curves of 90◦ are connected

by five straight lines (or portions considered as straight lines). Therefore the

circuit is divided in ten consecutive phases (See Fig. 2.7). The features of each

phase are presented in Table 2.2.

Table 2.2: Features of the phases in the Rotterdam’s Ahoy circuit.

Phase Description Dimensions
Phase 1 Straight Line Length 435m
Phase 2 90◦ curve Radius 25m
Phase 3 Straight Line Length 639m
Phase 4 90◦ curve Radius 21.3m
Phase 5 Straight Line Length 250m
Phase 6 90◦ curve Radius 16.3m
Phase 7 Straight Line Length 148m
Phase 8 90◦ curve Radius 22m
Phase 9 Straight Line Length 64m
Phase 10 90◦ curve Length 17.4m
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Figure 2.7: Consecutive phases in the Rotterdam’s Ahoy circuit.

The optimal solution obtained with the GPOPS ToolboxTM to run two laps

in the Rotterdam’s Ahoy circuit, is depicted in Fig. 2.8. The total distance is

3.266km and the maximum allowed time is 468s, being Ibattmax
= 7A. The total

performance of the solution is 474.0826km/kWh, equivalent to run 4215km with

one litre of fuel, according to (1.1).

2.4 Nonlinear discrete-time model

Having in mind the design of a control law which will be embedded on-board in

a digital device, a discrete-time model must be obtained from the dynamics (2.6)

and (2.7).

The Euler’s Forward difference numerical approximation is well suited to per-

form the discretization of nonlinear dynamics [33]. In the Euler’s Forward approx-

imation the state vector x(k+1) is written in an explicit way from the expression

dx

dt
(k) =

x(k + 1)− x(k)

Ts

, (2.18)
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Figure 2.8: Optimal driving strategy with performance of 474.0826km/kWh. (a)
Optimal velocity profile. (b) Optimal battery current profile.

where Ts[s] is the sample time. It follows that

x(k + 1) = Ts
dx

dt
(k) + x(k). (2.19)

On the other hand, in the Tustin’s method or in the Euler’s backward discretiza-

tion method, the expression x(k + 1) is derived in an implicit way

Backward differentiation Euler’s Method:
dx

dt
(k) =

x(k)− x(k − 1)

Ts

. (2.20)

The implicit approaches are less amenable to find a discrete-time model of a
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nonlinear dynamics, because they require the resolution of a nonlinear differential

equation [33]. Hence, the Euler’s Forward approximation will be used in the

following to find a discrete-time representation of the nonlinear continuous-time

vehicle dynamics.

From (2.6), (2.7) and (2.18), the following nonlinear discrete-time dynamic is

obtained

x1(k + 1) = x1(k) + Tsx2(k), (2.21)

and

x2(k + 1) = x2(k) + Ts
ηktgr
mrw

Ibatt(k)−
1

2m
TsρCdAfx2(k)

2 − TsgCr cos(θ(k))

− Tsg sin(θ(k)).

(2.22)

When the discretization process is implemented, a zero holder is usually consid-

ered and introduces a delay of Ts/2 (see Fig. 2.9). This delay can influence the

stability of the system if it is too large. In [33], it is demonstrated that the effect

of the time delay over the system stability is tolerable if the time delay Ts/2 is

smaller than one tenth of the rise time tr (63% rise time rule for the velocity of

operation) of the original continuous-time system, i.e,

Ts

2
≤ tr

10
,

Ts ≤
tr
5
.

(2.23)

Therefore, for the system (2.21)-(2.22) the sampling time will be set as Ts = 0.2s.

2.5 Real-time tracking of the optimal driving

strategy

In order to track the driving strategy, a control law must be designed. The

control law must cope with the real-time constraints inherent to the digital devices

wherein the control law will be embedded. The control law is appropriately
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Figure 2.9: Time delay of the discretization process [33]. h = Ts is the time step.

developed in Chapters 3-5. However, before proceeding further, the tracking

problem must be properly introduced. For this purpose, the tracking error is

first derived from the nonlinear dynamics of the vehicle. And then, two different

representations of the tracking error are introduced as amenable models to achieve

the design of the control law: Linearised model (Section 2.5.1) and LPV model

(Section 2.5.2). The control law must steer to zero the tracking error in order to

track the optimal reference, that is the driving strategy.

Consider the state x∗(k) = [x∗
1(k), x

∗
2(k)]

T ∈ R
2 and the input I∗batt(k), both

of them obtained respectively from the sampling, with sampling period Ts, of the

optimal trajectory x∗(t) = [x∗
1(t), x

∗
2(t)]

T ∈ R
2 and the sampling of the optimal

input I∗batt(t). Recall that (x
∗
1(t), x

∗
2(t), I

∗
batt(t)) are solution of (2.15) presented in

Section 2.3. From the nonlinear discrete state x(k) = [x1(k), x2(k)]
T ∈ R

2 of the

vehicle, and the optimal one x∗(k) = [x∗
1(k), x

∗
2(k)]

T , the following tracking error

is introduced for every sampling time

∆x(k) =

[

∆x1(k)

∆x2(k)

]

=

[

x1(k)− x∗
1(k)

x2(k)− x∗
2(k)

]

. (2.24)

Define ∆Ibatt(k) = Ibatt(k) − I∗batt(k) as the difference between the actual input

Ibatt(k) of the dynamics (2.22) and the sampled target control I∗batt(k) at time k.

Since the optimal references x∗(k) = [x∗
1(k), x

∗
2(k)]

T and I∗batt(k) follows the
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dynamics (2.21) and (2.22), in virtue of the optimization problem (2.15), then

the dynamics of the tracking error ∆x(k + 1) reads

∆x(k + 1) =

[

∆x1(k + 1)

∆x2(k + 1)

]

, (2.25)

where

∆x1(k + 1) = x1(k + 1)− x∗
1(k + 1),

= x1(k) + Tsx2(k)− (x∗
1(k) + Tsx

∗
2(k)) ,

= ∆x1(k) + Ts∆x2(k),

(2.26)

and

∆x2(k + 1) = x2(k + 1)− x∗
2(k + 1),

= x2(k) + Ts
ηktgr
mrw

Ibatt(k)−
1

2m
TsρCdAfx2(k)

2 − TsgCr cos(θ(k))− Tsg sin(θ(k))

−
(

x∗
2(k) + Ts

ηktgr
mrw

I∗batt(k)−
1

2m
TsρCdAfx

∗
2(k)

2 − TsgCr cos(θ(k))− Tsg sin(θ(k))

)

,

= (x2(k)− x∗
2(k))−

1

2m
TsρCdAf

(

x2(k)
2 − x∗

2(k)
2)+ Ts

ηktgr
mrw

(Ibatt(k)− I∗batt(k)) ,

= ∆x2(k)−
1

2m
TsρCdAf (x2(k) + x∗

2(k))∆x2(k) + Ts
ηktgr
mrw

∆Ibatt(k).

(2.27)

Thus,

∆x(k + 1) =

[

∆x1(k) + Ts∆x2(k)

∆x2(k)− 1
2m

TsρCdAf (x2(k) + x∗
2(k))∆x2(k) + Ts

ηktgr
mrw

∆Ibatt(k)

]

.

(2.28)

Notice that (2.28) is obtained since θ(k) is known for each time k and conse-

quently is the same quantity involved in the optimal solution and in the actual

dynamics. Conversely, x2(k) is not necessarily equal to x∗
2(k) since x2(k) is the

actual velocity and x∗
2(k) is the target velocity at time k.

The control objective is to steer to zero the nonlinear tracking error ∆x2(k+1).

The quantity ∆x1(k) = 0 for all k, since x1(k) and x∗
1(k) are the actual position
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of the vehicle in the track. The dynamics involved in the design of the control is

(2.28). In order to steer to zero (2.28), two approaches are proposed. The first

one, is based on the linearisation of (2.28) around an operating point. In the

second one, (2.28) is rewritten in the form of a Linear Parametric Varying (LPV)

model to preserve the nonlinear features of (2.28).

2.5.1 Linearised model

The nonlinear dynamics (2.28) can be approximated by a Taylor series approx-

imation around the steady-state operating point (x2e , Ibatte) obtained from the

solution of x2(k + 1) = x2(k) in (2.22), i.e.

Ibatte =
ρCdAfrw(x2e)

2 + 2mgrwCr

2ηktgr
, (2.29)

where x2e is the average velocity of the optimal solution of (2.15).

Define the auxiliary function f(x2(k), x
∗
2(k), Ibatt(k), I

∗
batt(k)) in (2.27) as

∆x2(k + 1) = f(x2(k), x
∗
2(k), Ibatt, I

∗
batt(k))

= (x2(k)− x∗
2(k))−

1

2m
TsρCdAf

(

x2(k)
2 − x∗

2(k)
2)+ Ts

ηktgr
mrw

(Ibatt(k)− I∗batt(k)) .

(2.30)

A linear approximation of (2.30), around the steady state (x2e , Ibatte), can be found

by developing the expansion of the Taylor series over f(x2(k), x
∗
2(k), Ibatt(k), I

∗
batt(k))

up to the order one, as follows

∆x2(k + 1) ≈f(·)
∣

∣

∣

∣

x2=x2e
x∗

2=x2e
Ibatt=Ibatte
I∗
batt

=Ibatte

+
∂f

∂x2

∣

∣

∣

∣

x2=x2e
x∗

2=x2e
Ibatt=Ibatte
I∗
batt

=Ibatte

(x2 − x2e) +
∂f

∂x∗
2

∣

∣

∣

∣

x2=x2e
x∗

2=x2e
Ibatt=Ibatte
I∗
batt

=Ibatte

(x∗
2 − x2e)

+
∂f

∂Ibatt

∣

∣

∣

∣

x2=x2e
x∗

2=x2e
Ibatt=Ibatte
I∗
batt

=Ibatte

(x2 − x2e) +
∂f

∂I∗batt

∣

∣

∣

∣

x2=x2e
x∗

2=x2e
Ibatt=Ibatte
I∗
batt

=Ibatte

(x∗
2 − x2e) .

(2.31)
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After proper mathematical developments, the expression (2.31) becomes

∆x2(k + 1) = ∆x2(k)

(

1− TsρCdAf

m
x2e

)

+
Tsηktgr
mrw

∆Ibatt(k). (2.32)

Finally, the following linearised state-space representation is obtained for the

tracking error (2.28)

∆x(k + 1) = A∆x(k) +B∆Ibatt(k), (2.33)

where ∆x(k) = [x1(k)− x∗
1(k), x2(k)− x∗

2(k)]
T and ∆Ibatt(k) = Ibatt(k)− I∗batt(k).

The matrices A and B are given by

A =

[

1 Ts

0 1− TsρCdAf

m
x2e

]

, B =

[

0
Tsηktgr
mrw

]

. (2.34)

The full state is assumed to be accessible, which means that both the position

and the velocity are measurable and the optimal reference of the position and the

velocity are always available.

2.5.2 Linear Parametric Varying model

Alternatively to the linearisation around an operation point, the nonlinear track-

ing error (2.28) can also be expressed in the form of a Linear Parametric Varying

(LPV) representation. Unlike the linearisation around an operation point, the

LPV representation is a exact representation of the nonlinear model and thus

preserves the nonlinear properties of the system. Additionally, it is motivated by

the fact that it benefits from efficient tools, such as Linear Matrix Inequalities

(LMIs), for the synthesis of the control law.

In general, a discrete-time LPV system is a system of the form

x(k + 1) = A(λ(k))x(k) +B(λ(k))u(k). (2.35)

λ(k) is called the time-varying parameter. If λ(k) ∈ Φ, for all k, with Φ a convex

polytope, then (2.35) is a LPV polytopic system. In that case, the realization
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matrices of the system (2.35) verify

[A(λ(k)) B(λ(k))] ∈ C, ∀k, (2.36)

being C the convex polytope

C = Co{[A1 B1], · · · , [ApC BpC ]}, (2.37)

where Co denotes the convex hull, [Aj Bj] the vertices of the convex hull for

1 ≤ j ≤ pC and pC the number of vertices in C. Any [A(λ(k)) B(λ(k))] within

the convex polytope C is described by the following linear combination

[A(λ(k)) B(λ(k))] =

pC
∑

j=1

fj(λ(k))[Aj Bj], (2.38)

with
pC
∑

j=1

fj(λ(k)) = 1, 0 ≤ fj(λ(k)) ≤ 1. (2.39)

The main requirements to find a LPV representation of a nonlinear system

are (see [21])

• The parameter is a function of the states, i.e. λ(k) = λ(x(k)), and this

function is known.

• The parameter is accessible on-line.

Following the prerequisites mentioned above, an equivalent LPV representa-

tion to the nonlinear dynamics (2.28) can be obtained. To that purpose, the

variable λ(k) = (x2(k) + x∗
2(k)) is introduced as the time-varying parameter ac-

cessible at each time k. Since x2 and x∗
2 are bounded, then the parameter λ(k)

is bounded as well, and λmin ≤ λ(k) ≤ λmax for all k. Notice that the future

behaviour of λ(k) is not necessarily known but λ(k) is always accessible.

The LPV representation of the nonlinear dynamics of the tracking error (2.28)

is

∆x(k + 1) = A(λ(k))∆x(k) +B∆Ibatt(k), (2.40)
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with

A(λ(k)) =

[

1 Ts

0 1− 1
2m

TsρCdAfλ(k)

]

, and B =

[

0

Ts
ηktgr
mrw

]

. (2.41)

From (2.38), the matrix A(λ(k)) in (2.40) reads

A(λ(k)) = f1(λ(k))A1 + f2(λ(k))A2, (2.42)

where
2
∑

j=1

fj(λ(k)) = 1, 0 ≤ fj(λ(k)) ≤ 1. (2.43)

The matrices A1 and A2 are characterized by the vertices (λmin, λmax) as follows

A1 =

[

1 Ts

0 1− 1
2m

TsρCdAfλmin

]

,

A2 =

[

1 Ts

0 1− 1
2m

TsρCdAfλmax

]

.

(2.44)

The functions f1 and f2 are characterized by the points indicated in Table 2.3.

Table 2.3: Functions f1(λ(k)) and f2(λ(k)).

λ(k) f1(λ(k)) f2(λ(k))
λmin 1 0
λmax 0 1

Therefore, f1 and f2 follows (see Fig. 2.10)

f1(λ(k)) =
λmax − λ(k)

λmax − λmin

, and f2(λ(k)) =
λ(k)− λmin

λmax − λmin

. (2.45)

Finally, any [A(λ(k)) B] within the convex polytope C is described by the
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(a) (b)

Figure 2.10: Functions of the vertices of the polytopic LPV representation. (a)
f1(λ(k)). (b) f2(λ(k)).

following linear combination

[A(λ(k)) B] =
2
∑

j=1

fj(λ(k))[Aj B]. (2.46)

2.6 Benchmark

The efficiency and performances of the optimal driving strategy and the tracking

strategies, are tested using a benchmark that has been built by the EMT. The

benchmark emulates both the vehicle and the circuit profile. It is composed by

four principal elements: the Vir’volt vehicle that has been equipped with several

embedded electronics, an inertial cylinder that emulates the inertia of the vehicle

and an electric motor that emulates frictions and disturbances, a microcontroller

in which the tracking strategy has been embedded, and a graphical user interface

used to visualize on-line the tracking performances. Those elements interact

between them as is shown in the block diagram of Fig. 2.11. The main blocks

are described in the following.

• The inertial cylinder and electric motor: The inertial cylinder, on which is

placed the vehicle, allows to emulate the inertia of the vehicle. The inertial
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Figure 2.11: Benchmark (Frolling1 = Frolling + Fslope).

cylinder is in the same axis than an electric motor which emulates the fric-

tion forces such as the aerodynamic force Faerodynamics, the rolling resistance

Frolling and the slope resistance Fslope (see (2.1) in Section 2.2.1). The rolling

resistance Frolling and the slope resistance Fslope depend of the slope θ of

the road (see (2.3) and (2.4)). The slope is known all along the path. The

aerodynamic resistance Faerodynamics, depends on the square of the actual

vehicle velocity x2(k)
2 (see (2.2)). To properly emulate Frolling, Fslope and

Faerodynamics according to θ(k) and x2(k)
2 at time k, the electric motor is

regulated by a PID controller. The PID controller makes the electric motor

to oppose to the movement of the vehicle in a quantity that corresponds to

Frolling, Fslope and Faerodynamics, according to the actual measure of θ(k) and

x2(k)
2 (see Fig. 2.11). The electric motor is also equipped with an electric

brake to emulate wind and others disturbances. In Fig. 2.12, the inertial
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cylinder and the electric motor are presented.

(a) (b) (c)

Figure 2.12: Benchmark in the year 2014. (a) Vir’Volt vehicle and benchmark.
(b) Detail of the Benchmark. (c) Inertial cylinder and electric motor.

• The Vir’volt vehicle: the vehicle lies over the inertial cylinder and is sub-

mitted to disturbances, frictions, and other phenomena that may be present

during the actual race. The vehicle is equipped with a microcontroller in

which the control strategy has been embedded. The vehicle is also equipped

with multiple sensors that measure the virtual travelled distance, the ve-

locity of the vehicle and the current of the battery (see Fig. 2.13a). The

travelled distance is considered as the actual position of the vehicle in the

track. Those measures are used by the microcontroller to compute the

control law (see Fig. 2.11).

• The microcontroller: A Microchip R© dsPIC33EP512MU810 microcontroller

(see Fig. 2.13b), is implemented on-board of the Vir’volt vechicle. This

device has an internal clock of 7.37 MHz, a RAM with 53000 bytes capacity

and a faster DMA RAM with 4096 bytes capacity. Its ADC samples at 500

kHz for 12 bits resolution and at 1 MHz for 10 bits resolution. The control

strategy designed to track to the optimal driving strategy is embedded in

the dsPIC. The optimal driving strategy (x∗
1(k), x

∗
2(k), I

∗
batt(k)) is saved in

the memory of the dsPIC. On-line, the actual travelled distance x1(k) is

used to find the corresponding reference velocity x∗
2(k) according to the
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position of the vehicle in the track. The reference velocity x∗
2(k) is required

by the embedded tracking strategy to compute the control law (see Fig.

2.11). In Fig. 2.13a are shown the embedded electronics implemented in

the back of the vehicle.

(a) (b)

Figure 2.13: On-board implemented electronics. (a) Electronics implemented
in the back of the vehicle. dsPic, power converter, etc. (b) Microchip R©
dsPIC33EP512MU810 microcontroller.

• The graphical user interface: a graphical user interface has been design in

LabViewTM to visualize the on-line performance of the tracking strategy.

Data such as the references x∗
2(k), I

∗
batt(k), and the control law Ibatt(k) are

acquired using a RS-232 protocol from the dsPIC. The rest of the data such

as x1(k), x2(k) and the frictional forces are collected using a data acquisition

system (DAQ) that consists in a National Instruments analog DAQ device

(USB-6289) (see Fig. 2.11).

The dynamics of the vehicle in the benchmark is a scaled version of the dy-

namics (2.6) and (2.7). The dynamics of the Vir’volt vehicle over the benchmark,
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for flat path, is given by

dx1(t)

dt
= x2(t),

dx2(t)

dt
= 1.1228Ibatt(t)− 0.1125x2(t)

2 − 0.1893.

(2.47)

The discrete-time model (2.21) and (2.22) is given by

x1(k + 1) = x1(k) + Tsx2(k),

x2(k + 1) = x2(k) + 1.1228TsIbatt(k)− 0.1125Tsx2(k)
2 − 0.1893Ts.

(2.48)

In order to asses the performance of the tracking strategy in the benchmark, a

optimal driving strategy is found for the dynamics (2.47), using the features of

the Rotterdam’s Ahoy track. The optimal driving strategy is computed for a

run of two laps in the Ahoy track, i.e. x1total = 3266m, and a final maximal time

tfmax
= 1050s. The solution of the optimal problem (2.15) for the dynamics (2.47)

is depicted in Fig. 2.14.
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Figure 2.14: Optimal driving strategy for the vehicle in the benchmark with
performance of 408.4401km/kWh. (a) Optimal velocity profile. (b) Optimal
battery current profile.

2.7 Conclusions

A model of the vehicle dynamics has been obtained and the unknown parameters

have been estimated using experimental data. The identified dynamics was used

to derive an optimal driving strategy that will be tracked on-line during the

driving task. The tracking problem was formulated using a linearised model

around an operating point and a Linear Parametric Representation (LPV).

In Chapters 3 and 4, proper control laws to perform the tracking of the optimal

reference are developed using the linearised representation of the tracking error

given by (2.33).
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In Chapter 5, a proper control law to perform the tracking of the optimal

reference is developed using the LPV representation of the tracking error given

by (2.40).
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Chapter 3

Tracking Model Predictive

Control

3.1 Introduction

Model Predictive Control (MPC) has been well-admitted for the past 50 years

as a suitable solution to deal with multi-variable constrained control problems

and robustness in presence of model uncertainties and noise [53, 11]. Its origins

go back to the years 1976 and 1978, in particular with the works of Richalet in

Model Predictive Heuristic Control and Model Algorithm Control [69, 23]. The

MPC is characterized by its ability to include soft and hard constraints, to deal

with multivariable dynamics, and to perform optimization on-line [69, 23].

Over the last 20 years, feasibility of the optimization problem and stability

of the control law have been major issues. Regarding the feasibility, the inherent

trade-off between finite-horizon and constraints of MPC-based techniques raise

challenging problems [11, 23]. In particular, when it comes to MPC-based track-

ing, such a trade-off may prevent the reachability of the reference [45]. As far

as stability is concerned, several approaches have been proposed to provide some

guarantees. The consideration of invariant sets as terminal constraint is one of

the most popular. Indeed, the strategies based on invariant sets allow to guaran-

tee convergence towards the origin by implicitly extending the prediction horizon

to the infinity without any substantial increasing of the on-line computational
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cost. The computation of the invariant sets, which may be usually polytopes

or ellipsoids, is usually performed off-line [30, 40, 17], which allows a real-time

implementation.

In this chapter, background on the issue of MPC-based tracking for LTI

discrete-time systems under time-invariant polytopic constraints on the input

and/or the state is recalled. The procedure to design an invariant set suitable to

be used in the MPC strategy as a terminal set is described in Section 3.3. The

invariant set guarantees asymptotic stability of the control law. In Section 3.4,

a numerical example of tracking subject to polytopic constraints is presented.

Finally, in Section 3.5, the MPC-based tracking under time-invariant constraints

on the input and on the state is applied to the Vir’volt vehicle.

3.2 Preliminaries

Consider the linear system with state-space description

x(k + 1) = Ax(k) +Bu(k), (3.1)

where x(k) ∈ R
n is the state, u(k) ∈ R

p is the control input, A ∈ R
n×n is the

dynamical matrix and B ∈ R
n×p is the input matrix. The pair (A,B) is assumed

to be stabilizable, i.e. ∃K s.t. (A +BK) is Schur stable. The state is assumed

to be accessible, i.e. x(k) is fully known at each time k. The system (3.1) is

assumed to be subject to constraints on the input and the state, that is

x(k) ∈ X, ∀k ≥ 0,

u(k) ∈ U, ∀k ≥ 0,
(3.2)

with X a convex and closed subset of Rn and U a convex and compact subset of

R
p. X and U are assumed to be polytopic sets.

Define the tracking errors ∆x(k) = x(k)− x̄ ∈ R
n and ∆u(k) = u(k)− ū ∈ R

p

around the steady-state targets x̄ ∈ R
n and ū ∈ R

p (x̄ and ū are solutions of

(3.1), i.e. x̄ = Ax̄+Bū). The dynamics of the tracking error is given by

∆x(k + 1) = A∆x(k) +B∆u(k), (3.3)
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with tracking constraints defined ∀k ≥ 0 as

∆x(k) ∈ X∆,

∆u(k) ∈ U∆,
(3.4)

where X∆ is a convex and closed subset of Rn and U∆ is a convex and compact

subset of Rp. Both subsets are assumed to be polytopic sets containing the origin

in their interior, i.e. 0 ∈ int(X∆) and 0 ∈ int(U∆), hence x̄ ∈ int(X) and

ū ∈ int(U) (int(·) denotes the interior of the set).

Remark 1 The constraints X∆ and U∆, are usually imposed by the application.

If the constraints are too narrow, they may cause infeasibility of the problem if

the performance requirements imposed to the control law are also too strict. Thus,

a trade-off must be found between the constraints and the performance require-

ments. To that purpose, the constraints may be relaxed and/or the performances

requirements of the control may be done less stringent. Hereafter, the constraints

X∆ and U∆ are assumed to respect that trade-off.

3.2.1 Polytopic constraints

The polytope X∆ is described by

X∆ = {∆x(k) ∈ R
n : HX∆

∆x(k) ≤ 1̄}. (3.5)

which is the hyperplane representation of the polytope X∆, with HX∆
∈ R

pX∆
×n

and 1̄ ∈ R
pX∆ is the ones vector 1̄ = [1, ..., 1]T . The scalar pX∆

is the facets

number of the polytope X∆, and corresponds to the number of rows in HX∆
.

The inequalities in the set (3.5) can be developed as









HX∆
(1, 1) HX∆

(1, 2) · · · HX∆
(1, n)

...
...

. . .
...

HX∆
(pX∆

, 1) HX∆
(pX∆

, 2) · · · HX∆
(pX∆

, n)

















∆x1

...

∆xn









≤













1

1
...

1













. (3.6)
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Each i-th row in HX∆
defines the equation

[

HX∆
(i, 1) HX∆

(i, 2) · · · HX∆
(i, n)

]









∆x1

...

∆xn









= 1, i = 1, ..., pX∆
, (3.7)

which is the equation of the hyperplane that describes the i-th facet in X∆.

The polytope U∆ is also represented by a hyperplane representation as

U∆ = {∆u(k) ∈ R
p : HU∆

∆u(k) ≤ 1̄}, (3.8)

with HU∆
∈ R

pU∆
×p and 1̄ ∈ R

pU∆ . The scalar pU∆
is the facets number of the

polytope U∆. The scalars pX∆
and pU∆

are named the complexity-index, and are

the number of facets, or equivalently the number of vertices, in the respective

polytope X∆ and U∆. Notice that polytopic representations are very handy to

deal with linear constraints often encountered in practical applications [17].

3.2.2 Problem formulation

The aim of the MPC-based strategy is to enforce dynamics in (3.3) to reach

the steady-state targets x̄ and ū while fulfilling the constraints (3.4). The control

under concern here, consists in the on-line solution of the following infinite horizon

open-loop optimization problem

min
∆u(k+i)∈Rp,i=[0,∞)

(

J(k) =
∞
∑

i=0

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

)

s.t. ∆x(k + i+ 1) = A∆x(k + i) +B∆u(k + i), ∀i = 0, ...,∞,

∆x(k + i) ∈ X∆, ∀i = 0, ...,∞,

∆u(k + i) ∈ U∆, ∀i = 0, ...,∞.

(3.9)

The closed-loop control consists in applying at each execution time k the first

element ∆u(k) of the optimal solution sequence ∆u(k),∆u(k + 1), ...,∆u(∞).

The weighting matrices Q ∈ R
n×n and R ∈ R

p×p define the state and the input

tracking costs respectively. Notice that the minimization in the problem (3.9) is

42



3. Tracking Model Predictive Control

performed over a set of infinite dimension.

Notice that, in general, optimality does not imply stability [39]. However, as

is pointed out in [53], asymptotic stability is assured for infinite horizon opti-

mal control problems (under stabilizability and detectability). Thus, asymptotic

stability is also assured for the infinite horizon optimization problem (3.9). Nev-

ertheless, solving on-line infinite horizon problems is usually not practical (apart

from standard H2 and H∞ control of linear systems) [53].

To tackle this problem, the performance criterion J(k) in (3.9) is rewritten as

J(k) =
∞
∑

i=0

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

,

=

Np−1
∑

i=0

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

+
∞
∑

i=Np

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

,

=

Np−1
∑

i=0

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

+∆xT (k +Np)P∆x(k +Np),

(3.10)

with P ∈ R
n×n the solution of the Riccati equation that solves the infinite-horizon

LQR problem for the system (3.3), with weighting matrices Q and R.

From (3.10), the problem (3.9) can been replaced by the following finite-
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horizon open-loop problem

min
∆u(k+i)∈Rp, i=[0,k+Np−1]

Np−1
∑

i=0

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

+∆xT (k +Np)P∆x(k +Np),

s.t. ∆x(k + i+ 1) = A∆x(k + i) +B∆u(k + i), ∀i = 0, . . . , Np − 1,

∆x(k + i) ∈ X∆, ∀i = 0, . . . , Np − 1,

∆u(k + i) ∈ U∆, ∀i = 0, . . . , Np − 1,

∆x(k +Np) ∈ Xf ,

(3.11)

with Np the prediction horizon and Xf the terminal (closed) set of feasible final

states (see Fig. 3.1). The matrix P defines the terminal cost. The closed-loop

control consists in applying at each execution time the first element ∆u(k) of the

optimal solution sequence ∆u(k),∆u(k + 1), ...,∆u(k +Np − 1). The solution of

the problem (3.11) implies that after Np steps, the state reaches the set Xf (see

Fig. 3.1). In practice, only the first element ∆u(k) is applied and then (3.11) is

solved again for every time k.

Figure 3.1: Set Xf of final states.

From [53, 11, 23], it has been well established that to enforce stability and

convergence towards the origin, it is sufficient to meet two requirements:
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• Make the terminal cost positive definite matrix P as the solution of the

Riccati equation.

• Design the tracking terminal set Xf to be a controlled invariant set in the

neighbourhood of the origin, under the LQR feedback gain denoted here

with K.

Indeed, the constraint on the terminal set ensures that, after Np steps, the pre-

dicted state reaches the terminal set. Since such a set is invariant, if the infinite

horizon LQR control gain K is applied, the convergence towards the origin is

guaranteed. Actually, the MPC consists in delivering, at each time k, the input

∆u(k), that is the first sample of the optimal input sequence resulting from the

solution of (3.11). At time k + 1, a new open-loop optimal control problem is

solved. The following subsection recalls some background on the design of the

terminal invariant set Xf .

3.3 Design of the invariant terminal set

The invariant sets can be ellipsoidal invariant sets or polytopic invariant sets.

The polytopic invariant sets are less conservative than the ellipsoidal invariant

set, but are harder to compute. Since the computation of the invariant set will

be performed off-line, a less conservative polytopic invariant will be chosen.

The following procedure corresponds to the standard procedure (see [17] for

example) to design a maximal polytopic invariant set, but is particularized for

the tracking problem (3.11).

Consider the closed-loop system

∆x(k + 1) = (A+BK)∆x(k), (3.12)

obtained from (3.3) and from the stabilizing feedback control law ∆u(k) =

K∆x(k). The gain K ∈ R
p×n is derived from P, that is the solution of the

Riccati equation related to the infinite-horizon stabilization problem for system

(3.3) with the quadratic cost weighting matrices R and Q involved in (3.11).
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Define the closed-loop constraints for (3.12) as

X∆ = {∆x(k) ∈ R
n : ∆x(k) ∈ X∆, K∆x(k) ∈ U∆}, (3.13)

whereX∆ and U∆ fulfil (3.4). The constraints (3.13) can be equivalently rewritten

as

X∆ = X∆ ∩X∆u(U∆), (3.14)

where

X∆u(U∆) = {∆x(k) ∈ R
n : K∆x(k) ∈ U∆}. (3.15)

Since the tracking constraintsX∆ and U∆ in (3.4) are assumed to be polytopic,

then the closed-loop constraint (3.13) can be expressed as a convex polytopic set

containing the origin in its interior. As a result, X∆ can be described by a

hyperplane representation with complexity-index pX ∈ N (i.e. pX is the number

facets of the polytope in the hyperplane representation):

X∆ = {∆x(k) ∈ R
n : HX∆

∆x(k) ≤ 1̄}, (3.16)

where

HX∆
=

[

HX∆

HU∆
K

]

, (3.17)

with HX∆
∈ R

pX×n, 1̄ ∈ R
pX being the ones vector 1̄ = [1, ..., 1]T and pX ≤ pX∆

+

pU∆
. The matrices HX∆

∈ R
pX∆

×n and HU∆
∈ R

pU∆
×p are the matrices of the

hyperplane representation of the tracking constraints X∆ and U∆, respectively,

with pX∆
and pU∆

the number of facets of each polytope.

Now, the definition of an invariant set for the LTI discrete-time system (3.12)

is introduced. The definition is borrowed from the general definition given in [16]

and [17].

Definition 1 A closed and convex set Ω ⊆ R
n with 0 ∈ int(Ω) (that is Ω is

a C-set), is said to be a positively invariant set for the system (3.12) under

(tracking) constraints X∆ given in (3.13), if for all ∆x(k) ∈ Ω then ∆x(k+1) =

(A+BK)∆x(k) ∈ Ω, being Ω ⊆ X∆.

Otherwise stated, for all ∆x(k) ∈ Ω, that is for any state ∆x(k) which has
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reached Ω, it holds that ∆x(k + i) ∈ Ω for all i ≥ 0, or equivalently that the

state can no longer escape from Ω. The notion of positively refers to the fact

that only the future states satisfy ∆x(k + i) ∈ Ω, that is to i ≥ 0. Hereafter, the

positively invariant sets will be merely called invariant sets for brevity since only

the positive invariance will be considered.

Since X∆ is a bounded polytope with the origin in its interior and A + BK

is Schur stable, then the maximal invariant set Ω in X∆ is also a convex poly-

tope [30]. For convenience, the set Ω is considered to be described by its vertex

representation

Ω =

{

∆x(k) ∈ R
n : ∆x(k) = VΩw,

pΩ
∑

i=1

w(i) = 1, w(i) ≥ 0, ∀i
}

, (3.18)

where VΩ ∈ R
n×pΩ is the matrix whose columns are the vertices of Ω, w ∈ R

pΩ ,

and pΩ is the complexity-index (number of vertices in the vertex representation)

of the polytopic invariant set Ω. The equality in (3.18) can be rewritten as









VΩ(1, 1) VΩ(1, 2) · · · VΩ(1, pΩ)
...

...
. . .

...

VΩ(n, 1) VΩ(n, 2) · · · VΩ(n, pΩ)





















w(1)

w(2)
...

w(pΩ)













=









∆x1

...

∆xn









. (3.19)

Each i-th column in VΩ is the i-th vertex of the polytope Ω. Notice that if

w(i) = 1, w(j) = 0, j 6= i, then









∆x1

...

∆xn









=









VΩ(1, i)
...

VΩ(n, i)









, (3.20)

where [VΩ(1, i), · · · , VΩ(n, i)]
T is the i-th vertex of Ω.

To determine Ω, one can resort to the backward iterative algorithm (see [17, 16]

for further details). The backward iterative algorithm can be summed up as

follows.

47



3. Tracking Model Predictive Control

Algorithm 1

1. Set k = 0 and X∆0 = X∆ defined by (3.16).

2. Calculate X∆−k−1
from X∆−k

as given by

X∆−k−1
= {∆x(x) ∈ X∆ : (A+BK)∆x(x) ∈ X∆−k

}. (3.21)

3. Check whether X∆−k
⊆ (1 + ǫ)X∆−k−1

, with ǫ a fixed numerical tolerance

introduced for practical purposes.

4. If X∆−k
⊆ (1 + ǫ)X∆−k−1

holds, then X∆−k−1
is an admissible invariant set

for X. If it does not hold, then move on time k + 1 and repeat the process

from Step 2 until X∆−k
⊆ (1+ ǫ)X∆−k−1

holds, or until a maximum allowed

number of steps is reached (for the sake of finite accuracy implementation).

In other words, the pre-images of X∆ obtained from the inverse dynamics of (3.12)

are successively computed back in time and trimmed to get the largest polytopic

invariant set included in X∆. To clarify the MPC strategy and the backward

iterative algorithm, an academic example is detailed in next section.

3.4 MPC-based tracking with time-invariant con-

straints: an academic example

Consider the system x(k + 1) = Ax(k) +Bu(k) with

A =

[

0.9 0.25

−0.25 0.9

]

, B =

[

0.5

2

]

, (3.22)

and x(k) = [x1(k), x2(k)]
T . The aim is to derive a control law so that the state

vector x(k) tracks a given trajectory with tracking constraints X∆ and U∆. The
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reference is (see Fig. 3.2 and 3.3)

x̄(k) =































[0.15;−0.08]T for k ≤ 50,

[0;−0.03]T for 50 < k ≤ 100,

[−0.1; 0.02]T for 100 < k ≤ 150,

[0;−0.06]T for k > 150.

(3.23)

0 50 100 150 200

−0.1

0

0.1

x̄
1

k

Figure 3.2: Reference x̄1(k).

0 50 100 150 200
−0.05

0

0.05

0.1

x̄
2

k

Figure 3.3: Reference x̄2(k).

The tracking constraints are described by

X∆ = {∆x(k) ∈ R
n : HX∆

∆x(k) ≤ 1̄} and U∆ = {∆u(k) ∈ R
p : HU∆

∆u(k) ≤ 1̄},
(3.24)
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where

HX∆
=













1
0.15

0

0 1
0.05

−1
0.2

0

0 −1
0.08













=













6.6667 0

0 20

−5 0

0 −12.5













, HU∆
=

[

1
0.01
−1
0.01

]

=

[

100

−100

]

.

(3.25)

The constraintsX∆ corresponds to−0.2 ≤ ∆x1(k) ≤ 0.15 and−0.08 ≤ ∆x2(k) ≤
0.05, for all k, and the constraints U∆ to −0.01 ≤ ∆u(k) ≤ 0.01, for all k. The

prediction horizon is Np = 10. The weighting matrices of the MPC problem

(3.11) are Q = [1 0; 0 1] and R = 30. The solution of the infinite-horizon

problem is P = [4.6534 0.5613; 0.5613 3.0237] and the corresponding gain is

K = [−0.0343 − 0.1478].

3.4.1 Computation of the terminal invariant set

The matrix HX∆
defined as in (3.17), which characterizes the closed-loop system

constraints X∆ given by (3.16), reads

HX∆
=























6.6667 0

0 20

−5 0

0 −12.50

−3.4304 −14.7758

3.4304 14.7758























, (3.26)

with complexity-index (number of facets in the polytope) pX = 6. The polytopic

constraints X∆ and X∆ are depicted in Fig. 3.4. The figure clearly shows that

X∆ is a subset of X∆, and it is in accordance with (3.14). The successive poly-

topes X∆−k−1
, involved in the backward iterative algorithm (see Algorithm 1), are

depicted in red dotted lines in Fig. 3.5. The resulting invariant set Ω, that is the

largest invariant set contained in X∆, is found after 5 steps and is portrayed in

solid line in Fig. 3.5.

The resulting invariant set Ω is given by the following vertex representation,

50



3. Tracking Model Predictive Control

Figure 3.4: Polytopic constraints. Dashed line: constraints X∆. Dash-dotted
line: constraints X∆.

Figure 3.5: Backward iterative algorithm. Red dashed lines: pre-images of X∆.
Solid line: final invariant set Ω.

the complexity-index (number of vertices in the polytope) being pΩ = 12:

VΩ =





















































0.1500 0.0329

0.0993 −0.0800

−0.0928 0.0194

0.0531 −0.0800

0.0761 0.0500

−0.0621 0.0500

−0.0785 0.0413

−0.0996 −0.0446

−0.1010 −0.0211

0.1257 −0.0661

0.1485 −0.0311

0.1500 −0.0238





















































T

. (3.27)
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3.4.2 Closed loop response

The problem (3.11), with polytopic invariant set given by (3.27), is solved for the

dynamics (3.22) with initial conditions x(0) = [0; 0]T . The results of the tracking

are depicted in Fig. 3.6-3.10. The results show that the tracking is achieved and

the constraints are fulfilled, as expected.

0 50 100 150 200
−0.4

−0.2

0

0.2

0.4

x
1

k

Figure 3.6: Tracking of x̄1(k). Solid line: tracking response of x1(k). Red dash-
dotted line: x̄1(k). Dashed line: time-invariant constraints X∆ for ∆x1(k).

0 50 100 150 200

−0.1

−0.05

0

0.05

0.1

0.15

x
2

k

Figure 3.7: Tracking of x̄2(k). Solid line: tracking response of x2(k). Red dash-
dotted line: x̄2(k). Dashed line: time-invariant constraints X∆ for ∆x2(k).
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∆
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Figure 3.8: Tracking error ∆x1(k). Solid line: tracking error ∆x1(k). Dashed
line: time-invariant constraints X∆ for ∆x1(k).
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Figure 3.9: Tracking error ∆x2(k). Solid line: tracking error ∆x2(k). Dashed
line: time-invariant constraints X∆ for ∆x2(k).
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Figure 3.10: Tracking error ∆u(k). Solid line: tracking error ∆u(k). Dashed line:
time-invariant constraints U∆.
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3.5 MPC-based tracking with time-invariant con-

straints: application to the Vir’volt vehicle

Consider the linearised model (2.33) of the Vir’volt electric vehicle around the

operating point (x2e , Ibatte). In the following, the problem (3.11) is considered for

the dynamics (2.33) with tracking reference given by the sampled solution of the

optimization problem (2.15) that is depicted in Fig. 2.8. Hereafter, the battery

current Ibatt will be simply denoted with u, therefore I∗batt = u∗ and Ibatte = ue.

The weighting matrices of the MPC problem (3.11) are Q = [0 0; 0 1] and

R = 1. The solution of the infinite-horizon problem is P = [0 0; 0 139.75] and the

corresponding gain is K = [0 − 0.6411]. The constraints for ∆x2(k) are imposed

as −2km/h ≤ ∆x2(k) ≤ 1km/h (−0.56m/s ≤ ∆x2(k) ≤ 0.28m/s). The tracking

only concerns the velocity, thus the constraints for ∆x1(k) are relaxed and set as

−10m ≤ ∆x1(k) ≤ 10m. The constraints X∆, as in (3.5), are described by

HX∆
=













1
10

0

0 1
0.28

−1
10

0

0 −1
0.56













=













0.1 0

0 3.6

−0.1 0

0 −1.8













. (3.28)

The constraints U∆ are set as −0.5A ≤ ∆u(k) ≤ 0.5A. The polytope U∆ is

described by

HU∆
=

[

1
0.5
−1
0.5

]

=

[

2

−2

]

. (3.29)

The constraints U∆ are shown in Fig. 3.11.

The closed-loop constraints X∆ defined in (3.16) are depicted in Fig. 3.12. The

backward iterative algorithm (see Algorithm 1) is applied to X∆ and the resulting

terminal invariant set Ω is found after 11 steps. It is portrayed in Fig. 3.12. The

complexity-index (number of vertices) of the polytope Ω is pΩ = 6. The polytope

is described by

VΩ =

[

10 10 9.4 −8.8 −10 −10

−0.55 0 0.27 −0.55 0.27 0

]

. (3.30)
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Figure 3.11: Optimal control u∗(k) and tracking constraints. Red dash-dotted
line: u∗(k). Dashed line: constraints U∆.

Figure 3.12: Maximal invariant set. Reed dash-dotted line: closed-loop con-
straints X∆. Solid line: final invariant set Ω.

The closed-loop control law (3.11) is applied to the nonlinear discrete-time

dynamics of the vehicle, given by (2.21) and (2.22), according to the block diagram

of Fig. 3.13. The operating point is fixed as the average velocity of the optimal

solution depicted in Fig. 2.8, i.e. x2e = 27km/h. The vehicle is subject to a mass

variation of 20% from its original value according to Table 2.1. The tracking

of the optimal velocity is depicted in Fig. 3.14. In Fig. 3.15-3.16 are depicted

∆x2(k) and ∆u(k), respectively. It can be observed that the tracking task is well

achieved while the constraints are satisfied.
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3. Tracking Model Predictive Control

Figure 3.13: Closed-loop implementation of the MPC. The function that describes
the velocity x2(k + 1) = f(x2(k), u(k)) is given by (2.22).
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Figure 3.14: Tracking of the reference x∗
2(k). Solid line: tracking response of

x2(k) with a mass variation of 20%. Red dash-dotted line: reference. Dashed
line: constraints X∆ for x2(k).
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Figure 3.15: Tracking error ∆x2(k). Solid line: tracking error ∆x2(k). Dashed
line: constraints X∆ for x2(k).
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Figure 3.16: Tracking error ∆u(k). Solid line: tracking error ∆u(k). Dashed line:
constraints U∆.

3.6 Conclusions

The issue of MPC-based tracking for LTI discrete-time systems under time-

invariant constraints on the input and/or the state has been recalled. The use of

a suitable invariant set as terminal set in the MPC problem has allowed to guar-

antee asymptotic stability to the reference. It has been noticed that the features

of the systems, such as the dynamics and the constraints, are intimately involved

in the design of the invariant set. The MPC strategy has been particularized to

a tracking task. It has been illustrated on both an academic example and the

linearised model of the Vir’volt vehicle.

The constant constraints (symmetric or asymmetric) may not be necessarily

well suitable for all the stages of the driving strategy. In particular, for the

Vir’volt vehicle, time-varying constraints may be more appropriated so that they

are adapted to different stages of the tracking task.

Indeed, regarding the application of the control law to the low consumption

Vir’volt vehicle, it can be observed that the discrepancies regarding the mass of

the vehicle or the frictions are more critical during the initial acceleration and

the final deceleration. The initial acceleration is intended to reach as soon as

possible the reference to accomplish the constraint of the final time, and the final

deceleration corresponds to turn off the motor to save energy. Thus, the initial

acceleration and the final deceleration are expected to be always present (under

feasibility conditions) in the solution of the problem (2.15). Therefore, particular

constraints may be imposed only at the beginning and at the end of the tracking
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of the velocity x∗
2(k). This particular constraints are not necessarily the same

that those required in the rest of the tracking task.

As a solution to deal with the problem stated above, it would be interesting

to derive a MPC strategy that allows to incorporate time-varying constraints

adapted to the features of the tracking task. The problem lies in that the proposed

solution must be suited for low computational resources and real-time constraints.

A solution to this problem is proposed in Chapter 4.
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Chapter 4

Tracking under time-varying

polytopic constraints

4.1 Introduction

The consideration of control problems with signals subject to time-varying con-

straints is often faced in real world applications. Despite the effervescence of

works dealing with MPC, only few ones address the problem under time-varying

constraints. As some exceptions, the following contributions can be quoted.

• In Bemporad et al. [12, 10], time-varying constraints that apply to the input

and the output are incorporated in the Explicit model predictive control. In

this approach, the time-varying constraints are required to be fully known

a priori and the controlling sequences must be computed off-line for all the

possible variations of the constraints. Hence, the implementation of the

MPC requires a massive storage capacity.

• In the work of Mayne et al. [51], time-varying constraints have also been

considered as an extension of the output feedback model predictive control

in [52]. The approach in [51] is based on a stable state estimator and a

robust tube-based MPC which is solved on-line. However, the existence

and the knowledge of a common invariant set satisfying the states and

inputs constraints for all the time instants is required.
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4. Tracking under time-varying polytopic constraints

• Wada et al. [67] address the feasibility and stability issues related to a MPC-

based tracking problem for LTI systems with time-varying constraints, more

specifically time-varying input saturation levels. In [67], on-line LMIs op-

timization problems are involved in the design of a gain-scheduled feed-

back control law, that is a feedback gain that depends on the time-varying

saturation level of the input. However, solving on-line the LMIs may be

unaffordable for real-time applications.

• Finally, it must be stressed that some well-admitted MPC-based tracking

formulations can be very effective for time-invariant constraints but cannot

be suited to cope with time-varying ones. It is precisely the case for the

MPC-based tracking strategy presented in [45] which benefits from larger

domain of attraction than the standard MPC formulation, but time-varying

constraints are not allowed.

All in all, the consideration of time-varying constraints is still challenging when

efficient MPC approaches compatible with real-time applications are required. In

the following, a solution to the tracking problem for LTI systems subject to time-

varying constraints is presented. The proposed solution is characterized by a

control algorithm with low computational cost suitable to real-time applications.

To enforce stability, the standard MPC-based tracking strategy with the terminal

invariant set [53, 23, 62] is used. The problem of the standard approach lies in

that the computation of the invariant set becomes intricate when considering

time-varying constraints. Indeed, if the constraints change in time, the invariant

set is also time-varying and so, must be recomputed on-line. And yet, when

real-time applications are sought, it is far from being computationally affordable.

As a clue to tackle this problem, this chapter introduces an approach based

on an homothetic transformation which consists in a contraction/dilatation of

a predefined invariant set previously computed off-line. Such a transformation

allows to fit on-line the time-varying constraints. The invariant set and the

time-varying constraints both admit polytopic representations. The resulting

parameter-dependent invariant set is an admissible terminal constraint for the

MPC problem and guarantees asymptotic stability. Since the homothetic trans-

formation is merely characterized by the dilating/contracting factor required to
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4. Tracking under time-varying polytopic constraints

fit the constraints, the computational cost for the on-line procedure boils down to

the calculation of such a factor, and thus the MPC becomes suitable for real-time

applications despite the time-varying constraints.

This chapter is organized as follows. In Section 4.2, the issue of MPC track-

ing problem subject to time-varying constraint is presented. The time-varying

constraints are described using time-varying polytopic representations. In Sec-

tion 4.3, the homothetic transformation of the terminal invariant set is detailed.

This homothetic transformation is proposed as a suitable time-varying invariant

set to be used in the time-varying MPC formulation. In Section 4.4, the MPC

strategy that involves the homothetic transformation, performed on-line, is pre-

sented. The time-varying invariant set, result of the homothetic transformation

used within the MPC, guarantees the asymptotic stability of the control law. In

Section 4.5, a numerical example is presented. Finally, in Section 4.6, the MPC

tracking strategy is applied to the Vir’volt vehicle.

4.2 Preliminaries

Consider the MPC-based tracking problem (3.11) for the system (3.3) given by

∆x(k + 1) = A∆x(k) +B∆u(k), (4.1)

with tracking polytopic time-varying constraints in the input and/or the state,

verifying ∀k ≥ 0

∆x(k) ∈ X∆(k) ⊆ R
n,

∆u(k) ∈ U∆(k) ⊆ R
p.

(4.2)

The notation (k) reflects that the control input and the actual state are con-

strained within sets of which size and shape might be changing in time. The

constraints X∆(k) and U∆(k) follow Remark 1 given in Chapter 3.

The objective is to steer to the origin the tracking error (4.1), while fulfill-

ing the polytopic constraints (4.2) with a MPC-based strategy. The open-loop
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4. Tracking under time-varying polytopic constraints

problem (3.11) turns into

min
∆u(k+i)∈Rp, i=[0,k+Np−1]

Np−1
∑

i=0

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

+∆xT (k +Np)P∆x(k +Np),

s.t. ∆x(k + i+ 1) = A∆x(k + i) +B∆u(k + i), ∀i = 0, . . . , Np − 1,

∆x(k + i) ∈ X∆(k), ∀i = 0, . . . , Np − 1,

∆u(k + i) ∈ U∆(k), ∀i = 0, . . . , Np − 1,

∆x(k +Np) ∈ Xf (k),

(4.3)

with Np, Q, R and P defined as in Section 3.2.

To ensure stability, convergence of the tracking error to zero, and recursive

constraints satisfaction altogether, it is convenient to define the time-varying

terminal (closed) set Xf (k) of feasible final states as a parameter-dependent in-

variant set for the system (3.12) under time-varying constraints (4.2). Having

in mind the real-time efficiency as a main priority, the point is that simplicity

of implementation must be preserved. And yet, as shown in Section 3.3, obtain-

ing an invariant set is computationally demanding. Notice that in particular,

the complexity-index of the polytopic constraints may also vary in time, which

means that the shape of the polytopic constraints may vary in time. A method to

compute Xf (k) is proposed in this chapter and benefits from an ease of real-time

implementation while preserving the stability and convergence properties.

Similarly to Section 3.3, consider the closed-loop system

∆x(k + 1) = (A+BK)∆x(k), (4.4)

obtained from (4.1) using the stabilizing feedback control law ∆u(k) = K∆x(k).

As in Section 3.3, the gain K ∈ R
p×n is derived from P, which is the solution of

the Riccati equation with matrices R and Q involved in (4.3).

Following (3.13) for the time-invariant case, the input and the state must

satisfy ∆u(k) = K∆x(k) ∈ U∆(k) with ∆x(k) ∈ X∆(k). This is equivalent to
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∆x(k) ∈ X∆(k) where

X∆(k) = {∆x(k) ∈ R
n : ∆x(k) ∈ X∆(k), K∆x(k) ∈ U∆(k)}

= X∆(k) ∩X∆u(U∆(k)),
(4.5)

and X∆u(U∆(k)), as in (3.15), is given by

X∆u(U∆(k)) = {∆x(k) ∈ R
n : K∆x(k) ∈ U∆(k)}. (4.6)

The following assumptions will be considered in the sequel.

Assumption 1 The steady-state targets x̄(k) and ū(k) are assumed to be avail-

able on-line. Furthermore, the targets x̄(k) and ū(k) are considered to remain

constant within the prediction horizon Np, i.e. x̄(k+i) = x̄(k) and ū(k+i) = ū(k)

for i = 0, ..., Np.

Remark 2 The assumptions made on the available knowledge of the future con-

straints can affect substantially the feasibility of the solution. In general, the

available information about the constraint can be classified as follows

• The constraints are measurable at instant k but its future behaviour is not

necessarily known.

• Only the boundaries of the constraints are known, but its particular be-

haviour is unknown.

• The present and future behaviour of the constraints are fully known.

This work does not focus on the problem of ensuring recursive feasibility. To our

opinion, this problem is not solvable for the general case with partial informa-

tion of the future behaviour of the constraints. Thereby, we pose the following

assumption (Assumption 2) on the on-line available knowledge. The results could

be easily adapted to the cases of different assumptions on the knowledge of future

constraints.

Assumption 2 The time-varying constraints sets X∆(k + i) and U∆(k + i) are

available on-line at least for i = 0, ..., Np.
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4. Tracking under time-varying polytopic constraints

Assumption 3 The time-varying constraints sets X∆(k) and U∆(k) are assumed

to be convex and compact polytopes that contain the origin in their interior, for

all k. X∆(k) and U∆(k) are represented by hyperplane representations described

by HX∆
(k) and HU∆

(k), respectively.

As a result, similarly to the time-invariant constraints case, the polytopic

constraints X∆(k) are represented by the following hyperplane representation

X∆(k) = {∆x(k) ∈ R
n : HX∆

(k)∆x(k) ≤ 1̄}, (4.7)

where HX∆
(k) ∈ R

pX(k)×n, 1̄ ∈ R
pX(k), pX(k) is the complexity-index of the poly-

topic constraints X∆(k) at time k, and

HX∆
(k) =

[

HX∆
(k)

HU∆
(k)K

]

. (4.8)

Assumption 4 The constraints X∆(k) follow the trade-off described in Remark

1 of Section 3.2.

Notice that unlike the time-invariant case presented in Section 3.2, since the con-

straints (4.8) vary in time, then the invariant terminal set must be recomputed

as the constraints change. The invariant sets can be recomputed on-line to solve

the MPC problem (4.3), or computed off-line and saved in memory, which may

require high memory capacity. It must be stressed that making such sets to be

time-varying can be a solution to cope, for example, with feasibility purposes.

Indeed, the larger the sets, the greater the feasibility region. Nevertheless, the

on-line recomputing of the invariant set is often restrictive if hard real-time con-

straints such as computation time and memory capacity must be faced. The aim

of next section is to propose a solution to handle such a problem.
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4.3 Homothetic transformation of the invariant

set

As a clue to tackle the aforementioned problem, suppose that a set Ω̂ ⊆ R
n

is given off-line. This set is defined as an invariant set for the system (4.4)

and admits a polytopic description. The main idea consists in defining an on-

line homothetic transformation, centred in the origin, to obtain an homothetic

copy of the invariant set Ω̂ at each time k. This homothetic transformation is

characterized by a factor α(k) ∈ R such as the resulting convex invariant set

Xf (k) = α(k)Ω̂ ⊆ R
n is an invariant set for the system (4.4) under convex

polytopic constraints X∆(k). It is important to emphasize that since X∆(k) and

Ω̂ are convex sets, then the homothetic transformation always exists.

Remark 3 The stability does not depend on the feature of the invariant set Ω̂. It

holds for any invariant set for the system (4.4). The feature can be chosen to meet

specific characteristics all along the homothetic transformations. In practice, the

choice can be made according to some heuristics specifying whether the invariant

set should be centred or not around the origin, symmetric or not, admitting a pre-

scribed number of vertices, etc. The invariant set Ω̂ can be designed from nominal

constraints X̂∆ and Û∆ conveniently chosen according to those specifications.

4.3.1 Principle of the homothetic transformation

Consider a given polytopic invariant set Ω̂. This invariant set is described by the

following vertex representation (as in (3.18))

Ω̂ =

{

∆x(k) ∈ R
n : ∆x(k) = VΩ̂w,

pΩ̂
∑

i=1

w(i) = 1, w(i) ≥ 0, ∀i
}

, (4.9)

where VΩ̂ ∈ R
n×pΩ̂ is the vertices array

VΩ̂ = [v1 v2 ... vpΩ̂ ], (4.10)

and each column vj ∈ R
n, j = 1, ..., pΩ̂, in VΩ̂ is the j-th vertex of the polytope

Ω̂. Besides, w ∈ R
pΩ̂ , and pΩ̂ is the complexity-index (number of vertices in the

65



4. Tracking under time-varying polytopic constraints

polytope) of the invariant set Ω̂.

On the other hand, consider the polytopic closed-loop constraints X∆(k) in

(4.7). Define Pi(k) as the i-th hyperplane given by the i-th facet of the polytope

X∆(k). The hyperplane Pi(k) verifies

Pi(k) = {∆x(k) ∈ R
n : Hi(k)∆x(k) = 1}, (4.11)

where Hi(k) ∈ R
1×n is the i-th row in HX∆

(k), with i = 1, ..., pX(k). Notice

that Hi(k)∆x(k) = 1 describes the hyperplane equation of the i-th facet of the

polytope X∆(k).

Now, given a vertex vj ∈ R
n (j = 1, · · · , pΩ̂) in (4.10), such that the scalar

Hi(k)vj is non-zero, there exists a scalar β ∈ R such that βvj belongs to the

hyperplane Pi(k) (see Fig. 4.1). Since, this non-zero scalar β belongs to the

hyperplane Pi(k), it verifies

Hi(k)βvj = 1. (4.12)

It is illustrated in Fig. 4.1. Hereafter, the scalar β will be indexed by i, j and k

as follows

β(i,j,k) =
1

Hi(k)vj
. (4.13)

4.3.2 Computation of the homothetic factor

For the polytopic sets Ω̂ and X∆(k), define the following strategy from (4.13)

α(k) = min{max{0, β(i,j,k)}, i = 1, ..., pX(k), j = 1, ..., pΩ̂}. (4.14)

Such a strategy delivers at each time k a contracting or a dilating factor α(k)

such as the set Xf (k) = α(k)Ω̂ ⊆ X∆(k) is the largest “copy” of Ω̂ contained in

X∆(k). In Fig. 4.1, it can be observed that the homothetic copy of Ω̂ dilates or

contracts homogeneously, and its vertices follow the direction of the vertices of

Ω̂. The following remark guarantees the existence of such a factor.

Remark 4 At each time k, since X∆(k) is assumed to be convex and compact,

then for each vj, j = 1, ..., pΩ̂(k), there exists at least one Hi(k), i = 1, ..., pX(k),
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Figure 4.1: Geometry of the homothetic transformation. Solid line: polytopic
invariant set Ω̂. Dashed line: homothetic copy of Ω̂ at time k. Red line: polytopic
constraints X∆ at time k. β(i,j)vj: homothetic vector of vj (along the blue vectors)
with factor β(i,j) at time k (time index k not reported for brevity sake).

such that β(i,j,k) is positive.

The strategy of the homothetic transformation can be summarized as follows

• If 0 < α(k) < 1, then the invariant set Ω̂ is contracted by a factor α such

that α(k)Ω̂ is the largest homothetic contraction of Ω̂ that is contained in

X∆(k).

• If α(k) = 1, then the invariant set Ω̂ is already the largest set that is

contained in X∆(k), thus Ω̂ is kept unchanged.

• If α(k) > 1, then the invariant set Ω̂ is dilated by a factor α such that

α(k)Ω̂ is the largest homothetic dilation of Ω̂ that is contained in X∆(k).

Notice that nothing has been said yet regarding the invariance properties of the

polytopic set α(k)Ω̂. Until now, only a maximal homothetic transformation that

fits the time-varying constraints X(k) has been found from a single invariant set Ω̂.

In next section, the homothetic transformation α(k)Ω̂ is proposed as a candidate

to be an invariant set for the time-varying problem (4.3), and the MPC problem

(4.3) is reformulated using α(k)Ω̂.
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4.4 MPC with homothetic transformation of the

invariant set

In the following, is demonstrated that the set α(k)Ω̂ is an invariant set for the

problem (4.4) with time-varying constraints X∆(k) and U∆(k), and therefore can

be used as a terminal set constraint in (4.3).

Proposition 1 The convex polytope Xf (k) = α(k)Ω̂, under the strategy (4.14),

is an invariant set for the system (4.4) under time-varying constraints X∆(k).

Proof 1 Since Ω̂ is an invariant set for (4.4), then α(k)Ω̂ is also an invariant set

for (4.4) in absence of constraints (or for no particular constraints), in virtue of

the invariance properties for linear systems (see [17]). In addition, since α(k)Ω̂ ⊆
X∆(k), then α(k)Ω̂ is also an invariant set for (4.4) under constraints X∆(k) in

virtue of Definition 1.

Therefore, the problem (4.3) can rewritten as follows using α(k)Ω̂

min
∆u(k+i)∈Rp, i=[0,k+Np−1]

Np−1
∑

i=0

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

+∆xT (k +Np)P∆x(k +Np),

s.t. ∆x(k + i+ 1) = A∆x(k + i) +B∆u(k + i), ∀i = 0, . . . , Np − 1,

∆x(k + i) ∈ X∆(k), ∀i = 0, . . . , Np − 1,

∆u(k + i) ∈ U∆(k), ∀i = 0, . . . , Np − 1,

∆x(k +Np) ∈ α(k)Ω̂.

(4.15)

Regarding the stability properties of problem (4.15), the following result is ob-

tained as a corollary of Proposition 1.

Corollary 1 The control law given by the solution of (4.15) with Xf (k) = α(k)Ω̂

and α(k) defined as in (4.14), guarantees the convergence and the stability of

∆x(k) around the origin.

Proof 2 It is a straightforward consequence of Proposition 1 which ensures that

Xf (k) = α(k)Ω̂ is an invariant set for (4.4) under constraints X∆(k). Indeed,
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such a property is sufficient to guarantee the asymptotic stability of ∆x(k) around

the origin.

The algorithm used to implement the MPC problem (4.15), can be summa-

rized as follows.

Algorithm 2

• Off-line steps

Compute an invariant set Ω̂ for the system (4.1), with some arbitrary con-

straints X̂∆ and Û∆ according to Remark 3.

• On-line steps

1. Measure ∆x(k) and ∆u(k) at time k.

2. Measure X∆(k) and X∆(k) at time k and find X∆(k) from (4.7) and

(4.8).

3. Compute α(k) using the strategy (4.14) (α(k) verifies α(k)Ω̂ ⊆ X∆(k)).

4. Solve the MPC problem (4.15) with terminal set constraint α(k)Ω̂.

5. Apply ∆u(k) as the first element of the solution of (4.15).

6. Return to Step 1.

The Algorithm 2 is illustrated in the next section.

4.5 MPC-based tracking with time-varying con-

straints: an academic example

4.5.1 Problem statement

Consider the same discrete-time system (3.22) as in Section 3.4 given by

A =

[

0.9 0.25

−0.25 0.9

]

, B =

[

0.5

2

]

. (4.16)
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The aim is to calculate a control law in order to track the reference given by

x̄(k) =







[0.5; 0]T for k < 100,

[0.1; 0.4]T for k ≥ 100,
(4.17)

subject to the polytopic time-varying tracking constraints X∆(k) and U∆(k). The

constraints X∆(k) are described by

X∆(k) = {∆x(k) ∈ R
2 : HX∆

(k)∆x(k) ≤ 1̄}, (4.18)

where

HX∆
(k) =































H
(1)
X∆

for k < 30,

H
(2)
X∆

for 30 ≤ k < 90,

H
(3)
X∆

for 90 ≤ k < 140,

H
(4)
X∆

for k ≥ 140,

(4.19)

with

H
(1)
X∆

=













1
0.4

0

0 1
0.4

−1
0.4

0

0 −1
0.4













=













2.5 0

0 2.5

−2.5 0

0 −2.5













,

H
(2)
X∆

= H
(4)
X∆

=













1
0.1

0

0 1
0.1

−1
0.1

0

0 −1
0.1













=













10 0

0 10

−10 0

0 −10








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









1
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0
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0

0 −1
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







=










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3.3 0
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−3.3 0
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











.

(4.20)

Besides, the constraints U∆(k) are described by

U∆(k) = {∆u(k) ∈ R
1 : HU∆

(k)∆u(k) ≤ 1̄}, (4.21)
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where

HU∆
(k) =































H
(1)
U∆

for k < 30,

H
(2)
U∆

for 30 ≤ k < 90,

H
(3)
U∆

for 90 ≤ k < 140,

H
(4)
U∆

for k ≥ 140,

(4.22)

with

H
(1)
U∆

=

[

1
0.04
−1
0.04

]

=

[

25

−25

]

, H
(2)
U∆

= H
(4)
U∆

=

[

1
0.01
−1
0.01

]

=

[

100

−100

]

,

H
(3)
U∆

=

[

1
0.05
−1
0.04

]

=

[

20

−25

]

.

(4.23)

The feedback gain K = [−0.0343 − 0.1478] is obtained from Q = [1 0; 0 1],

R = 30 and P = [4.6534 0.5613; 0.5613 3.0237], noticing that it does not depend

on the constraints. Therefore, from (4.8), the time-varying closed-loop constraints

X∆(k) are given by the following polytopic representation

X∆(k) = {∆x(k) ∈ R
2 : HX∆

(k)∆x(k) ≤ 1̄}, (4.24)

where

HX∆
(k) =































H
(1)
X∆

for k < 30,

H
(2)
X∆

for 30 ≤ k < 90,

H
(3)
X∆

for 90 ≤ k < 140,

H
(4)
X∆

for k ≥ 140,

(4.25)

with

H
(1)
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=
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


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
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



, H
(2)
X∆
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(4)
X∆

=
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


















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
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
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, (4.26)
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and

H
(3)
X∆

=























3.33 0

0 2.5

−3.33 0

0 −2.5

−0.69 −2.96

0.69 2.96























. (4.27)

In the following section, Algorithm 2 is applied.

4.5.2 Results

• Off-line step: choice of the invariant set.

According to Remark 3, the choice of the invariant set Ω̂ does not im-

pact the stability and may be made according to some heuristics related

to the specificity of the application. Here, as an arbitrary choice, it is

built from the feedback gain K indicated above (obtained by solving the

LQR problem with weighting matrices Q = [1 0; 0 1], R = 30 and P =

[4.6534 0.5613; 0.5613 3.0237] of the MPC problem (4.3)) and the same con-

straints (3.25) as in the time-invariant case. Hence, the resulting invariant

Ω̂ is defined by (3.27) and is recalled in Fig. 4.2.

Figure 4.2: Invariant set Ω̂.

• On-line steps: MPC with homothetic transformation.

By applying the strategy (4.14), the following dilating/contracting homo-
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thetic factors are obtained

α(k) =































2.67 for k < 30,

0.67 for 30 ≤ k < 90,

2 for 90 ≤ k < 140,

0.67 for k ≥ 140.

(4.28)

The time evolution of α(k) is plotted in Fig. 4.3. The time-varying con-

straints (4.18) and (4.21) are depicted in Fig. 4.4, 4.6 and 4.8 for each time

interval. The nominal invariant set Ω̂ and the invariant sets obtained after

the homothetic transformation with factors (4.28) are depicted in Fig. 4.5,

4.7 and 4.9, respectively. The figures clearly illustrate that for α(k) > 1

(resp. α(k) < 1), the nominal invariant set Ω̂ dilates (resp. contracts) ho-

mogeneously. From the figures, it is also clear that the largest homothethic

invariant set is still a subset of X∆(k), as expected.

0 50 100 150 200
0

1

2

3

k

α

Figure 4.3: Time evolution of α(k).

The dilation/contraction effect of the homothetic factor α(k) over the nom-

inal invariant set Ω̂, is illustrate in the Fig. 4.10.

The tracking of the reference (4.17) with initial conditions x(0) = [0; 0.3]T

is depicted for x1(k) and x2(k) in Fig. 4.11 and 4.12, respectively. The

tracking errors ∆x1(k) and ∆x2(k) are depicted in Fig. 4.13 and 4.14. The

control ∆u(k) is the solution of the MPC problem (4.15) with terminal
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Figure 4.4: Constraints for k < 30. Dotted line: constraint X∆(k). Dash-dotted
line: constraint X∆(k).

Figure 4.5: Homothetic transformation for k < 30. Dotted line: constraint
X∆(k). Dash-dotted line: constraint X∆(k). Dashed line: nominal invariant set
Ω̂. Solid line: α(k)Ω̂ with α(k) = 2.67.

Figure 4.6: Constraints for 30 ≤ k < 90 or k ≥ 140. Dotted line: constraint
X∆(k). Dash-dotted line: constraint X∆(k).
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Figure 4.7: Homothetic transformation for 30 ≤ k < 90 or k ≥ 140. Dotted line:
constraint X∆(k). Dash-dotted line: constraint X∆(k). Dashed line: nominal
invariant set Ω̂. Solid line: α(k)Ω̂ with α(k) = 0.67.

Figure 4.8: Constraints for 90 ≤ k < 140. Dotted line: constraint X∆(k). Dash-
dotted line: constraint X∆(k).

Figure 4.9: Homothetic transformation for 90 ≤ k < 140. Dotted line: constraint
X∆(k). Dash-dotted line: constraint X∆(k). Dashed line: nominal invariant set
Ω̂. Solid line α(k)Ω̂ with α(k) = 2.
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Figure 4.10: Dilation and contraction of the invariant set. Solid line: nominal
invariant set Ω̂. Dashed line: 0.67Ω̂. Dotted line: 2Ω̂. Dash-dotted line: 2.67Ω̂.

constraint α(k)Ω̂. The control ∆u(k) is depicted in Fig. 4.15. The plots

highlight that the tracking is achieved while the time-varying constraints

are fulfilled.
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x
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k

Figure 4.11: Tracking of the reference x̄1(k). Solid line: tracking response of
x1(k). Dash-dotted line: reference.

4.5.3 Computational resources

The on-line computational requirements (memory and computation time) of the

MPC approach with the homothetic transformation are compared with respect

to the computational requirements of the standard MPC approach. In the MPC

approach with the homothetic transformation, only the dilation/contraction of
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Figure 4.12: Tracking of the reference x̄2(k). Solid line: tracking response of
x2(k). Dash-dotted line: reference.
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Figure 4.13: Tracking error ∆x1(k). Solid line: tracking error ∆x1(k). Dashed
line: time-varying constraints.
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Figure 4.14: Tracking error ∆x2(k). Solid line: tracking error and ∆x2(k).
Dashed line: time-varying constraints.

77



4. Tracking under time-varying polytopic constraints
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Figure 4.15: Tracking error ∆u(k). Solid line: tracking error ∆u(k). Dashed line:
time-varying constraints.

the nominal invariant set is performed on-line to fit the time-varying constraints.

None invariant set is computed on-line. Conversely, in the standard MPC, a

new invariant set is fully recomputed on-line every time the constraints vary in

time. In Table 4.1, the computational resources used to solve the tracking of the

reference (4.17) with time-varying constraints (4.18) and (4.21) are presented for

each approach. The numerical simulations are performed on an Intel Corei7 with

2.2GHz and 6GB of RAM.

Table 4.1: On-line computational resources MPC with homothetic transformation
and standard MPC.

Method Computation time Memory used
MPC with homothetic transformation 7.49ms 3002Bytes
Standard MPC 21.28ms 10494Bytes

The MPC approach with the homothetic transformation is almost 3 times

faster than the standard MPC approach in which the invariant set is completely

recomputed on-line as the constraints vary in time. Additionally, the memory

used by all the variables involved in the on-line computation of the homothetic

factor α(k), and by those variables involved in solving the MPC problem, is near

3.5 times smaller than the memory used on-line to fully compute the invariant

set using the backward iterative algorithm and solve the MPC. It illustrates that

the homothetic transformation allows to reduce the memory and time require-

ments for the real-time implementation, in case of time-varying constraints. The
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fully recomputation of the invariant set at each time that the constraints vary in

time allows to have a bigger domain of attraction, but the performances of both

approaches are similar.

4.6 MPC-based tracking with time-varying con-

straints: application to the Vir’volt vehicle

In this section, the problem (4.3) is fully developed for the linearised model (2.32)

of the Vir’volt electric vehicle dynamics around (x2e , Ibatte). Hereafter, the battery

current Ibatt will be simply denoted with u, therefore I∗batt = u∗, Ibatte = ue.

The main objective is to solve the MPC law (4.3) to steer to zero the error

dynamics (2.33). Now, a bounded set of constraints X∆(k) for every k is imposed.

As it turns out, no special constraints are required for the position accuracy

∆x1(k) since the tracking is only concerned with the velocity. For that reason,

in practice, very large constraints −100m ≤ ∆x1(k) ≤ 100m are imposed for

every k.

Regarding the tracking constraints on the velocity, it is worth considering

robustness issues. Indeed, there are unavoidable mismatches between the param-

eters of the model and the actual ones. Discrepancies regarding the mass of the

vehicle or the frictions will be more critical during the initial acceleration and the

final deceleration (see Fig. 2.8a). For example, an increasing of the mass will lead

to a slower acceleration. Therefore, the constraints for ∆x2(k) must be relaxed

at the beginning and at the end of the path. Consequently, the constraints for

∆x2(k) are time-varying.

Notice that, since the vehicle starts at speed equal to zero, the initial natural

strategy is to accelerate as much as possible to reach the optimal nominal velocity.

That precisely corresponds to the optimal solution as illustrated by Fig. 2.8a and

Fig. 2.8b. Notice also that when the vehicle approaches the end of the path,

the natural energetically optimal behaviour consists in switching off the motor

propulsion (see Fig. 2.8a).

The resulting constraints X∆(k) are represented by the following polytopic
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description HX∆
(k) as defined in (4.18)

HX∆
(k) =



















H
(1)
X∆

for x∗
1(k) < 944m,

H
(2)
X∆

for 944m ≤ x∗
1(k) < 2588m,

H
(3)
X∆

for x∗
1(k) ≥ 2588m,

(4.29)

where
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
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
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
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(4.30)

As far as the input tracking constraints U∆(k) are concerned, the battery current

u(k) must fulfil, for all k

0 ≤ u(k) ≤ umax. (4.31)

Then, to avoid the inadmissible values of the input, ∆u(k) in (2.32) has to satisfy

the following constraint

∆umin(k) ≤∆u(k) ≤ ∆umax(k),

−u∗(k) ≤∆u(k) ≤ umax − u∗(k).
(4.32)

The constraints are time-varying because ∆u(k) depends on the optimal control

input u∗(k) (see Fig. 2.8b) that may change in time. Additionally, 0 ∈ int(U∆(k))

must be satisfied for every k, and therefore a small tolerance ǫ = 1 × 10−6 is

introduced for the cases where u∗(k) = umax or u∗(k) = 0. As a result, the
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constraints U∆(k) on the input, as defined in (4.21), obey

HU∆
(k) =



















H
(1)
U∆

if u∗(k) = umax,

H
(2)
U∆

if u∗(k) = 0,

H
(3)
U∆

otherwise,

(4.33)

where

H
(1)
U∆

=

[

(ǫ)−1

(−umax)
−1

]

, H
(2)
U∆

=

[

(umax)
−1

(−ǫ)−1

]

, H
(3)
U∆

=

[

(umax − u∗(k))−1

(−u∗(k))−1

]

.

(4.34)

The time-varying tracking constraints for ∆u(k) (see (4.32)) are depicted in

Fig. 4.16 with respect to the vehicle position. Notice that the constraints U∆(k)

are not symmetric.
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Figure 4.16: Time-varying tracking constraints U∆(k) with respect to the vehicle’s
position. Solid line: ∆umin(k). Dashed line: ∆umax(k).

4.6.1 Results

In order to make the tracking task appropriate for real-time implementation de-

spite the time-varying constraints, Algorithm 2 is applied. To this end, a nominal

invariant set Ω̂ must be precomputed off-line for (2.32) and then scaled on-line

to fit the time-varying constraints described by (4.29) and (4.33), as seen in Sec-

tion 4.3. This invariant set will act as a terminal set constraint and stability and
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convergence of the state to steady-state values will be guaranteed by the MPC

algorithm (see Corollary 1).

• Off-line step: The choice of the invariant set.

The nominal tracking constraints (used only to compute off-line the initial

invariant set) X̂∆ and Û∆ (see Remark 3), are chosen as

−50m ≤∆x1(k) ≤ 50m,

−0.138m/s ≤∆x2(k) ≤ 0.138m/s,
(4.35)

and

−10A ≤ ∆u(k) ≤ 10A. (4.36)

The polytopes X̂∆ and Û∆ are described by

HX̂∆
=


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
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
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
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




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0 7.20

−0.02 0

0 −7.20
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







, HÛ∆
=

[

1
10
−1
10

]

=

[

0.1

−0.1

]

.

(4.37)

The weighting matrices areQ = [0 0; 0 1] andR = 1, thusP = [0 0; 0 139.75]

and K = [0 − 0.6411]. The following closed-loop nominal constraints X̂∆

are obtained with K defined as above,

H
X̂∆

=






















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0 7.20
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0 −7.20
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0 0.064























. (4.38)
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The maximal invariant set Ω̂ that fits (4.38) is given by the following vertex

representation

VΩ̂ =























50 −0.1389

50 −0

49.7020 0.1389

−49.7020 −0.1389

−50 0.1389

−50 0























T

. (4.39)

• On-line steps: MPC with homothetic transformation.

Since in the actual application, the dynamics of the vehicle is nonlinear,

the tracking task will be performed by applying the control to the non-

linear discrete-time dynamics (2.22), as is depicted in the block diagram

of Fig. 4.17. The optimal solution ∆u(k),∆u(k + 1), ...,∆u(k + Np) of

the MPC problem (4.3), with Np = 10, is computed from the actual state

x(k) = [x1(k), x2(k)]
T of the nonlinear dynamics (2.22) using the linearised

tracking error ∆x2(k) = (x2(k)− x2e)− (x∗
2(k)− x2e). The operating point

is fixed as the average velocity of the optimal solution depicted in Fig. 2.8,

i.e. x2e = 27km/h.

Figure 4.17: Closed-loop implementation of the time-varying MPC. The function
that describes the velocity x2(k + 1) = f(x2(k), u(k)) is given by (2.22).

The homothetic dilation/contraction of the invariant set is applied within

the MPC algorithm to fit the closed-loop constraints X∆(k), according to

Algorithm 2. The first component ∆u(k) of the optimal solution of the
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MPC problem is used to shape the control input u(k) for the nonlinear

dynamics by making u(k) = ∆u(k) + u∗(k). Notice that to comply with

Assumption 1, the references u∗(k) and x∗(k) are kept constant during the

prediction horizon Np. The sampling period is Ts = 0.2s. The tracking task

is performed for a mass variation of 10% and 50% in the nonlinear model

(2.22).

From the strategy (4.14), the scaling factor is calculated on-line and it is

obtained that α(k) ∈ {0.067, 0.561, 1.752, 2}. Next, the nominal invariant

set Ω̂, described by (4.39), is scaled with the homothetic transformation to

fit the closed-loop constraints X∆(k) given by (4.7), where

HX∆
(k) =

[

HX∆
(k)

HU∆
(k)K

]

, (4.40)

with HX∆
(k) and HU∆

(k) as given by (4.29) and (4.33), respectively.

The invariant set Ω̂ and the different homothetic transformations α(k)Ω̂ for

the distinct values of α are depicted in Fig. 4.18. The evolution of α is

plotted in Fig. 4.19 with respect to the vehicle position.

Figure 4.18: Dilation and contraction of the invariant set. Solid line: nominal
invariant set Ω̂. Dashed lines: dilation or contraction of the nominal invariant
set.

The tracking response x2(k) of the nonlinear system is depicted in Fig. 4.20

with respect to the vehicle position. The difference between the actual

nonlinear velocity x2(k) and the target state x∗(k) at time k, i.e. ∆x2(k) =
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Figure 4.19: Homothetic factor α with respect to the vehicle’s position x1.

x2(k)− x∗
2(k), is depicted in Fig. 4.21 with respect to the vehicle position.

In Fig. 4.22, the input for the nonlinear tracking ∆u(k) = u(k) − u∗(k) is

depicted with respect to the vehicle position. The results show that tracking

task is achieved and the constraints are satisfied.
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Figure 4.20: Closed-loop tracking response. Red dashed line: reference x∗
2(k).

Dashed line: tracking response of the nonlinear system with a mass variation of
10%. Solid line: tracking response of the nonlinear system with a mass variation
of 50%.

85



4. Tracking under time-varying polytopic constraints

0 500 1000 1500 2000 2500 3000

−5

0

5

x1[m]

∆
x
2
[k
m
/
h
]

Figure 4.21: Closed-loop tracking error ∆x2(k). Red dashed lines: ∆x2min(k) and
∆x2max(k). Dashed line: tracking error ∆x2(k) of the nonlinear system with a
mass variation of 10%. Solid line: tracking error ∆x2(k) of the nonlinear system
with a mass variation of 50%.
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Figure 4.22: Closed-loop tracking error ∆u(k). Red dashed lines: ∆umin(k) and
∆umax(k). Dashed line: tracking input ∆u(k) of the nonlinear system with a
mass variation of 10%. Solid line: tracking input ∆u(k) of the nonlinear system
with a mass variation of 50%.

4.7 Conclusions

A real-time MPC-based tracking strategy for linear systems subject to time-

varying constraints in the state and/or the input has been presented. The cen-

tral idea is based on a polytopic invariant set computed off-line which is homo-

geneously dilated or contracted on-line to fit polytopic time-varying constraints.

The resulting time-varying invariant set has been used as an admissible terminal
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constraint set so that it guarantees stability and convergence in the tracking task.

It has been shown that time-varying constraints can allow to take into account

practical concerns such as the consideration of saturations and the guarantee

of feasibility despite uncertainties. The MPC strategy has been applied to the

practical case of the Vir’volt vehicle.

Beyond the interest of a solution which is appropriate to cope with time-

varying constraints, the approach is well suited for real-time applications. Indeed,

the additional cost of the approach, compared with the standard MPC for the

time-invariant case, is quite negligible.

Until now, the linearised model has been used to design the control law. It

should be interesting to account for all the nonlinear features of the tracking

problem (due to the nonlinearities of the dynamics of the Vir’volt vehicle) in

the synthesis of the control law. In the following chapter, the Linear Parametric

Representation (LPV) of the tracking problem, detailed in Section 2.5.2, is con-

sidered. A MPC-based tracking strategy for LPV systems is developed in order

to achieve the tracking task.
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Chapter 5

Real-time Robust Model

Predictive Control for LPV

systems

5.1 Introduction

In this chapter, a control strategy based on the Linear Parametric-Varying (LPV)

representation of the tracking error (2.40) in Section 2.5.2 is presented. When

it comes to control synthesis, the point which must be considered for LPV rep-

resentation is that, although the varying parameters are accessible because they

are measured on-line, the future behaviour is uncertain. However, if the parame-

ters are bounded, they can be considered as lying in a polytope. In such a case,

the control law can result from the solution of a finite number of Linear Matrix

Inequalities (LMIs). Furthermore, LMIs are very handy to take into account the

uncertainties in the parameters and the constraints imposed to the control task.

The LMIs were first introduced into a robust constrained MPC algorithm

for polytopic LTV systems (with a straightforward possible extension to poly-

topic LPV systems) in [42]. However, the formulation presented in [42] is very

conservative. Since then, several works such as [49, 66, 22] have proposed en-

hancements of [42] to reduce conservativeness. Nevertheless, they require to solve

on-line a convex optimization problem involving LMIs, which is a major draw-
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back for real-time applications. Furthermore, all the aforementioned works deal

with symmetric constraints in the input and the output. On the other hand, the

work of [71] addresses the problem of MPC for LPV systems subject to asymmet-

ric constraints. However, it also requires solving on-line LMIs. Besides, as [71]

highlights, the proposed solution for asymmetric constraints is very conservative

since the control design does not consider the time-varying parameter of the LPV

representation. On the other hand, the robust MPC strategy for LPV systems in

[66], explicitly includes the measure of the time-varying parameter in the control

law, which reduces the conservatism, but it still needs solving on-line of LMIs.

In this chapter, [66] is adapted to obtain an off-line version acceptable for

real-time implementation. The modifications partially follow the same lines as in

[68] to reduce the computational time and the resources required for the MPC

algorithm. However, the off-line algorithm presented in [68] does not take into

account the value of the time-varying parameter of the LPV representation. In

this chapter, the time variations of the parameter are considered to design a

controller suitable for real-time implementation and with low conservatism.

This chapter is organized as follows. In Section 5.2, the problem of MPC

tracking for a LPV system is introduced. In Section 5.3, a robust MPC for

LPV systems is described. This approach involves the on-line solution of a finite

number of LMIs. In Section 5.3.1, an explicit MPC strategy for LPV systems is

presented. This approach reduces the on-line computational cost, since the LMIs

are solved off-line, but does not include the time-varying parameter in the solution

of the control law. In Section 5.5, a robust MPC for LPV systems that includes

the time-varying parameter in the computation of the control law is presented.

This approach uses a Parameter Dependent Lyapunov Function (PDLF) to reduce

conservatism. However, this approach also involves the on-line solution of a finite

number of LMIs. In Section 5.6, a new explicit MPC strategy for LPV systems

is presented. This strategy involves the time-varying parameter in the control

law and reduces the on-line computational cost. Finally, in Sections 5.4 and

5.7, the aforementioned approach is illustrated through numerical examples, and

are applied to the problem of the Vir’volt vehicle tracking the optimal driving

strategy.
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5.2 Problem formulation

Consider the dynamics of the polytopic LPV system (2.40), i.e.

∆x(k + 1) = A(λ(k))∆x(k) +B∆u(k), (5.1)

with u(k) = Ibatt(k) and I∗batt(k) = u∗(k), and its output equation

∆y(k) = C∆x(k), (5.2)

with

A(λ(k)) =

[

1 Ts

0 1− 1
2m

TsρCdAfλ(k)

]

, B =

[

0

Ts
ηktgr
mrw

]

and C =
[

0 1
]

, (5.3)

where λ(k) = (x2(k) + x∗
2(k)). The boundaries of the parameter λ(k), i.e. λmin ≤

λ(k) ≤ λmin, are assumed to be known but the future behaviour of the parameter

is unknown. From Section 2.5.2, it has been already established that the dynamics

of the tracking error ∆x(k) = [x1(k)− x∗
1(k); x2(k)− x∗

2(k)]
T , belongs to a family

of dynamics given by (2.38) within the polytope C. The polytope C has pC = 2

vertices. In the following, the tracking problem is formulated for the family of

dynamics [A(λ(k)) B] given by (2.38), i.e.

[A(λ(k)) B] =
2
∑

j=1

fj(λ(k))[Aj B], (5.4)

with

A1 =

[

1 Ts

0 1− 1
2m

TsρCdAfλmin

]

, A2 =

[

1 Ts

0 1− 1
2m

TsρCdAfλmax

]

(5.5)

and

f1(λ(k)) =
λmax − λ(k)

λmax − λmin

, f2(λ(k)) =
λ(k)− λmin

λmax − λmin

. (5.6)
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The dynamics (5.1) is subject to polytopic symmetric constraints in the input

and in the output, as follows

∆u(k) ∈ U∆, ∀k ≥ 0,

∆y(k) ∈ Y∆, ∀k ≥ 0,
(5.7)

where U∆ and Y∆ are described by

U∆ = {∆u(k) ∈ R : HU∆
∆u(k) ≤ 1̄} and Y∆ = {∆y(k) ∈ R : HY∆

∆y(k) ≤ 1̄},
(5.8)

with

HU∆
=

[

1
∆umax

− 1
∆umax

]

and HY∆
=

[

1
∆ymax

− 1
∆ymax

]

. (5.9)

As a result, the constraints (5.7) are inequalities constraints of the form

−∆umax ≤ ∆u(k) ≤ ∆umax, ∀k ≥ 0,

−∆ymax ≤ ∆y(k) ≤ −∆ymax, ∀k ≥ 0.
(5.10)

The MPC tracking, which consists in steering the error ∆x(k), in (5.1), to

zero, can be addressed by the following min-max problem, written in terms of

the family of dynamics [A(λ(k)) B] (see [42, 68])

min
F (k+i) ∈ Rp×n

(

max
[A(λ(k+i)) B]∈C, i≥0

J(k)

)

,

s.t.

∆x(k + i+ 1) = A(λ(k + i))∆x(k + i) +B∆u(k + i), ∀i ≥ 0,

∆u(k + i) = F (k + i)∆x(k + i), ∀i ≥ 0,

∆y(k + i) = C∆x(k + i), ∀i ≥ 1,

∆u(k + i) ∈ U∆, ∀i ≥ 0,

∆y(k + i) ∈ Y∆, ∀i ≥ 1,

(5.11)
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where the robust performance objective J(k) is given by

J(k) =
∞
∑

i=0

(

∆xT (k + i)Q∆x(k + i) + ∆uT (k + i)R∆u(k + i)
)

. (5.12)

The symmetric weighting matrices Q ∈ R
n×n,Q > 0, and R ∈ R

p×p,R > 0,

define the state and the input tracking costs respectively. U∆ and Y∆ are the sets

of symmetric tracking constraints for the tracking of the input and the output,

respectively. As a result, the state feedback control law ∆u(k) = F (k)∆x(k), is

the control which minimizes the worst-case of the cost J(k) in (5.11) [42, 68].

5.3 Robust constrained MPC for LPV systems

According to [42, 68], the problem (5.11) is not computationally tractable. How-

ever, it can be reformulated as

min
F (k+i) ∈ Rp×n

γ(k),

s.t.

∆x(k + i+ 1) = A(λ(k + i))∆x(k + i) +B∆u(k + i), ∀i ≥ 0,

∆u(k + i) = F (k + i)∆x(k + i), ∀i ≥ 0,

∆y(k + i) = C∆x(k + i), ∀i ≥ 1,

∆u(k + i) ∈ U∆, ∀i ≥ 0,

∆y(k + i) ∈ Y∆, ∀i ≥ 1,

(5.13)

where the scalar γ(k) is an upper bound of J(k), in (5.12), at time k [42, 68].

It is shown in [42, 68] that, if there exists a Lyapunov function V (∆x(k)) to

the problem (5.13), such that

max
[A(λ(k+i)) B]∈C, i≥0

J(k) ≤ V (∆x(k)) ≤ γ(k), (5.14)

93



5. Real-time Robust Model Predictive Control for LPV

for any [A(λ(k + i)) B] ∈ C, i ≥ 0, with

∆u(k) = F (k)∆x(k), (5.15)

then, the existence of the upper bound γ(k) is guaranteed, and the problem

(5.13), and thus (5.11), is solved by

min
Θ(k), Λ(k)

γ(k), (5.16)

s.t.
[

1 ⋆

∆x(k) Θ(k)

]

≥ 0, Θ(k) > 0, (5.17)













Θ(k) ⋆ ⋆ ⋆

A1Θ(k) +BΛ(k) Θ(k) ⋆ ⋆

Q1/2Θ(k) 0 γ(k)I ⋆

R1/2Λ(k) 0 0 γ(k)I













≥ 0, (5.18)













Θ(k) ⋆ ⋆ ⋆

A2Θ(k) +BΛ(k) Θ(k) ⋆ ⋆

Q1/2Θ(k) 0 γ(k)I ⋆

R1/2Λ(k) 0 0 γ(k)I













≥ 0, (5.19)

[

∆u2
maxI ⋆

Λ(k)T Θ(k)

]

≥ 0, (5.20)

[

∆y2maxI ⋆

(A1Θ(k) +BΛ(k))T CT Θ(k)

]

≥ 0, (5.21)
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[

∆y2maxI ⋆

(A2Θ(k) +BΛ(k))T CT Θ(k)

]

≥ 0, (5.22)

(⋆ denotes the corresponding block to make each matrix inequality symmetric)

where A1,A2, B and C are given in (5.3) and (5.5). The matrix I is the identity

matrix. The unknown quantities are Θ(k) ∈ R
n×n and Λ(k) ∈ R

p×n. The

quantities γ(k), Θ(k), Λ(k), are dependent on time k because they are computed

at each execution time k.

To sum up, the solution to the problem (5.16) is the minimum γ(k) such that

there exist matrices Θ(k) and Λ(k) that satisfy the LMIs stated in (5.17)-(5.22)

at time k.

In the following, it is shown that the solution of (5.16) is also solution of the

problem (5.13), and that the function

V (∆x(k)) = ∆xT (k)M(k)∆x(k), M(k) > 0, (5.23)

whereM(k) = γ(k)Θ(k)−1, with γ(k) andΘ(k) solutions of (5.16), is a Lyapunov

function for (5.13) with the gain F (k), of the control law ∆u(k) = F (k)∆x(k),

given by

F (k) = Λ(k)Θ(k)−1. (5.24)

• The inequality (5.17) is equivalent to V (∆x(k)) ≤ γ(k). Indeed, by ex-

panding (5.17) by means of the Schur complement and letting Θ(k) =

γ(k)M(k)−1 in (5.17), the following holds

1−∆x(k)TΘ(k)−1∆x(k) ≥ 0,

1−∆x(k)Tγ(k)−1
M (k)∆x(k) ≥ 0,

∆x(k)Tγ(k)−1
M (k)∆x(k) ≤ 1,

∆x(k)TM (k)∆x(k) ≤ γ(k),

V (∆x(k)) ≤ γ(k).

(5.25)

Therefore, the right side of (5.14) is fulfilled by (5.17).
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• The inequalities (5.18) and (5.19) are equivalent to that

max
[A(λ(k+i)) B]∈C, i≥0

J(k) ≤ V (∆x(k)). (5.26)

The constraints (5.18) and (5.19) also guarantee that the function (5.23),

withM(k) = γ(k)Θ(k)−1, is a quadratic Lyapunov function for the problem

(5.13) for any [A(λ(k + i)) B] ∈ C, i ≥ 0, with ∆u(k) = F (k)∆x(k).

Indeed, it can be shown (see Appendix B.2) that the inequalities (5.18) and

(5.19) are equivalent to

V (∆x(k + i+ 1))− V (∆x(k + i)) ≤

−
(

∆x(k + i)TQ∆x(k + i) + ∆u(k + i)TR∆u(k + i)
)

,

(5.27)

for all [A(λ(k + i)) B] ∈ C, i ≥ 0, with V (∆x(k)) given by (5.23) and the

gain F (k), of the control law ∆u(k) = F (k)∆x(k), given by (5.24). The

expression (5.27), is used in the following to show, firstly, that V (∆x(k)) in

(5.23) is a Lyapunov function, and secondly, that (5.26) is achieved.

1. Since Q > 0 and R > 0, the right side of (5.27) is always negative.

Thus, V (∆x(k)), is strictly decreasing for i ≥ 0. Besides, from the

definition of V (∆x(k)), in (5.23), V (∆x(k) = 0) = 0. Therefore,

inequalities (5.18) and (5.19) guarantee that V (∆x(k)), as defined in

(5.23) with M(k) = γ(k)Θ(k)−1, is a robust quadratic Lyapunov func-

tion for (5.13).

2. It can be shown (see Appendix B.3) that (5.27) is equivalent to

J(k) ≤ V (∆x(k)), (5.28)

which is satisfied for all [A(λ(k + i)) B] ∈ C, i ≥ 0. In particular,

max
[A(λ(k+i)) B]∈C, i≥0

J(k) ≤ V (∆x(k)). (5.29)

From items 1 and 2, since the scalar γ(k) is an upper bound for J(k), the
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control law solution of (5.16), i.e.

∆u(k) = Λ(k)Θ(k)−1∆x(k), (5.30)

stabilises the system (5.1) to the origin in a robust asymptotic way.

• The matrix inequality (5.20) guarantees that (5.15) satisfies ∆u(k) ∈ U∆.

Indeed, it can be shown (see Appendix B.4) that (5.20) is equivalent to

(∆u(k))T∆u(k) ≤ ∆u2
max. (5.31)

• The constraints (5.21) and (5.22), guarantee that the symmetric constraints

for the output are fulfilled, i.e. ∆y(k + i) ∈ Y∆, ∀i ≥ 1. It is possible to

shown (see Appendix B.5) that (5.21) and (5.22) are equivalent to

(∆y(k + i))T∆y(k + i) ≤ ∆y2max, ∀i ≥ 1. (5.32)

It is worth pointing out that, the recursive feasibility of the problem (5.16) is

proved in [42]. Therefore, the solutions computed at time k for the state ∆x(k)

will be solutions for ∆x(k + i), i ≥ 0, as well.

The problem (5.16) involves at least 2 + 2pC LMIs constraints, with pC the

number of vertices in the polytope C. And yet, the optimization problem (5.16)

must be solved on-line at each time k. Hence, the problem (5.16) is not suitable

for real-time applications. To handle this problem, [68] proposes the following

off-line approach, here particularized to achieve the tracking task.

5.3.1 Explicit MPC for LPV systems with off-line com-

putation of LMIs

The key idea of the explicit approach is to grid the state-space and to solve the

problem (5.16) off-line for a finite number of the elements of the gridded state-

space. The gains that are solutions of (5.16) are saved in look-up tables and are

used on-line to steer ∆x(k) to zero. As it will be shown later, asymptotically

stable invariant sets will guarantee that ∆x(k) is asymptotically stabilized to
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zero, even for the points ∆x(k) which do not correspond to samples of the gridded

state-space.

In Section 5.3.1.1, the concept of asymptotically stable invariant ellipsoids for

(5.16) is introduced. Next, in Section 5.3.1.2, the principle and the algorithm of

the explicit MPC are described.

5.3.1.1 Asymptotically stable invariant ellipsoids

Define the set ξ(k) as the set of the states that verify (5.17), i.e.

ξ(k) = {∆x(k) ∈ R
2 : ∆x(k)TΘ(k)−1∆x(k) ≤ 1}, (5.33)

with Θ(k)−1 being the solution of the optimization problem (5.16) at time k.

Consider, at time k+ i, a non-zero state ∆x(k+ i) that is already in ξ(k+ i), i.e.

∆x(k + i)TΘ(k + i)−1∆x(k + i) ≤ 1. (5.34)

If the feedback control law ∆u(k+i) = Λ(k+i)Θ(k+i)−1∆x(k+i) (with Λ(k+i)

and Θ(k + i) the solutions of (5.16) at k + i) is applied to ∆x(k + i), then in

virtue of the dynamics (5.1), it holds that

∆x(k + i+ 1) =
(

A(λ(k + i)) +BΛ(k + i)Θ(k + i)−1
)

∆x(k + i). (5.35)

In [42, 68], it is demonstrated that from the recursive feasibility features of prob-

lem (5.16), the state (5.35) satisfies all the LMIs constraints (5.17)-(5.22) com-

puted at time k + i, in particular

∆x(k + i+ 1)TΘ(k + i)−1∆x(k + i+ 1) ≤ 1. (5.36)

Therefore, ∆x(k + i + 1), given by (5.35), accomplishes that ∆x(k + i + 1) ∈
ξ(k + i), i ≥ 0, if ∆x(k + i) ∈ ξ(k + i). Additionally, since the control law

∆u(k) = Λ(k)Θ(k)−1∆x(k) asymptotically stabilises the system (2.40) to the
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origin, then

∆x(k+ i+1)TΘ(k+ i)−1∆x(k+ i+1) < ∆x(k+ i)TΘ(k+ i)−1∆x(k+ i), i ≥ 0,

(5.37)

and thus (5.36) satisfies

∆x(k+i+1)TΘ(k+i)−1∆x(k+i+1) < ∆x(k+i)TΘ(k+i)−1∆x(k+i) ≤ 1, i ≥ 0.

(5.38)

From Definition 1, in Section 3.3, it is clear that for every k, the set ξ(k) is an

asymptotically stable invariant set [42, 68]. Since (5.33) describes an ellipsoid,

then ξ(k) is an ellipsoidal invariant set for the system (5.1) under the closed-loop

state feedback control ∆u(k) = Λ(k)Θ(k)−1∆x(k). Having being introduced the

concept of asymptotically stable invariant ellipsoid for the problem (5.16), the

algorithm of the explicit MPC with off-line computation of LMIs can be now

presented.

5.3.1.2 The explicit MPC algorithm

Solving (5.16) off-line for a finite gridding of the state-space, i.e. for the set ∆x̌ =

{∆x(1),∆x(2), · · · ,∆x(j)}, gives the corresponding sets Θ̌ = {Θ(1),Θ(2), · · · ,Θ(j)}
and Λ̌ = {Λ(1),Λ(2), · · · ,Λ(j)}, where Θ(i) and Λ(i) are the solutions of (5.16)

for ∆x(k) = ∆x(i). The sets Θ̌ and Λ̌, are saved in look-up tables. In virtue of

(5.33), for each Θ(i) a corresponding invariant ellipsoidal set ξ(i) can be obtained.

Thus, a set of concentric ellipsoidal invariant sets, i.e. ξ̌ = {ξ(1), ξ(2), · · · , ξ(j)},
(see Fig. 5.1) is implicitly given by Θ̌.

Figure 5.1: Example of set of concentric ellipsoids for a state-space of dimension 2.
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On-line, at each time k, the smallest ellipsoid ξ(i) ∈ ξ̌ that contains the actual

state ∆x(k) (see Fig. 5.2) is chosen. Next, the closed-loop control ∆u(k) =

Λ(i)
(

Θ(i)
)−1

∆x(k) is applied, where the gains Λ(i) and
(

Θ(i)
)−1

of the look-up

table correspond to the ellipsoid ξ(i).

Figure 5.2: The smallest ellipsoid that contains the actual state ∆x(k) is ξ(2) and
is depicted in black.

Remark 5 Notice that for all the states ∆x(k) ∈ ξ(k), given by (5.33), all the

LMIs constraints (5.17)-(5.22) are feasible, but not necessarily optimal [68]. How-

ever, although ∆u(k) = Λ(i)
(

Θ(i)
)−1

∆x(k) is not necessarily optimal, it still be-

ing an admissible solution for (5.16), since (5.17)-(5.22) are satisifed for ∆x(k)

if ∆x(k) ∈ ξ(i).

The algorithm that sums up the overall explicit approach is detailed in the fol-

lowing.

Algorithm 3

• Off-line steps

1. For practical purposes, it is convenient to consider the gridding of only

one component ∆xi of ∆x, letting the remaining components constant.

Choose a set of values ∆x̌i = {∆x
(1)
i ,∆x

(2)
i , · · · ,∆x

(j)
i }, as far from the

origin as possible while preserving the feasibility of the problem.
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2. Solve (5.16) for each element ∆x(j) in the set ∆x̌ of states, and save

in a look-up table the corresponding sets Θ̌ = {Θ(1),Θ(2), · · · ,Θ(j)}
and Λ̌ = {Λ(1),Λ(2), · · · ,Λ(j)}.

The closed-loop control consists in the following real-time strategy per-

formed on-line.

• On-line steps

1. Measure ∆x(k) = [∆x1(k), ∆x2(k)]
T at time k.

2. Search in the look-up table the gain Θ(i) such that ξ(i) = {∆x(k) ∈
R

2 : ∆x(k)T
(

Θ(i)
)−1

∆x(k) ≤ 1} is the smallest invariant ellipsoid

that contains ∆x(k).

3. Apply ∆u(k) = Λ(i)
(

Θ(i)
)−1

∆x(k).

4. Return to Step 1.

In the next section, Algorithm 3 is applied to the Vir’volt vehicle described in

Section 2.2.

5.4 Robust MPC for LPV systems: application

to the Vir’volt vehicle

Consider the LPV representation (5.1) of the dynamics of the tracking error

∆x(k), and the corresponding tracking problem (5.16) with weighting matrices

Q = [0 0; 0 1]T and R = 1. The tracking constraints are imposed as follows

−2km/h ≤ ∆y(k) ≤ 2km/h and 0.5A ≤ ∆u(k) ≤ 0.5A. (5.39)

The driving strategy to be tracked is depicted in Fig. 2.8. The tracking task

is performed by applying the closed loop control law to the nonlinear discrete-

dynamics (2.22). A mass variation of 20% is considered within (2.22) in order to

asses the robustness to small disturbances. The sampling period is Ts = 0.2s.
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5.4.1 Robust MPC for LPV systems with on-line compu-

tation of LMIs

The tracking task is performed by fully solving on-line the problem (5.16) at each

execution time, and applying ∆u(k) = Λ(k)Θ(k)−1∆x(k) (see Fig. 5.3).

Figure 5.3: Closed-loop implementation of the robust MPC for LPV systems ap-
proach of [42]. The function that describes the velocity x2(k+1) = f(x2(k), u(k))
is given by (2.22).

The tracking of the velocity x∗
2(k) according to the actual position of the

vehicle is depicted in Fig. 5.4 and 5.5, in black solid line.
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Figure 5.4: Closed-loop tracking response with a mass variation of 20%. Red
dashed line: reference x∗

2(k). Black solid line: tracking response of x2(k).

The difference between the actual nonlinear velocity x2(k) and the target state

x∗(k) at time k, i.e. the tracking error ∆x2(k) = x2(k) − x∗
2(k), is depicted in

Fig. 5.6, in solid black line, with respect to the vehicle position.
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Figure 5.5: Detail of the closed-loop tracking response of Fig. 5.4.
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Figure 5.6: Closed-loop tracking error ∆x2(k) with a mass variation of 20%. Red
dashed lines: ∆x2min(k) and ∆x2max(k). Solid black line: tracking error ∆x2(k).

In Fig. 5.7, in solid black line, the input for the nonlinear tracking ∆u(k) =

u(k)− u∗(k) is depicted with respect to the vehicle position.
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Figure 5.7: Closed-loop tracking error ∆u(k) with a mass variation of 20%. Red
dashed lines: ∆umin(k) and ∆umax(k). Solid black line: tracking input ∆u(k).
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It can be observed in Fig. 5.4-5.7 that the tracking task is well achieved,

despite the mass variation. The tracking task is achieved while the constraints

are satisfied. However, the aforementioned MPC strategy that consists in fully

solving on-line the problem (5.16) at each execution time, is not compatible with

the intended real-time application, because the problem (5.16) involves the on-

line solution of six LMIs. Thus, as proposed in Section 5.3.1, the problem (5.16)

is tackled with Algorithm 3 which does not require to solve LMIs on-line.

5.4.2 Explicit MPC for LPV systems with off-line com-

putation of LMIs

Consider Algorithm 3 described in Section 5.3.1, with matrices Q and R as stated

above, and constraints ∆ymax and ∆umax as defined in (5.39). Algorithm 3 is ap-

plied to Vir’volt dynamics as depicted in the block digram of Fig. 5.8.

Figure 5.8: Closed-loop implementation of the explicit approach of the robust
MPC for LPV systems (Algorithm 3) [68] with j = 9. The function that describes
the velocity x2(k + 1) = f(x2(k), u(k)) is given by (2.22).

The procedure performed to apply Algorithm 3 to the Vir’volt dynamics is de-

scribed in the following.
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• Off-line steps

1. The gridding over the state ∆x is chosen by making ∆x1 = 0 and

∆x2 = {1.80km/h, 1.43km/h, 0.90km/h, 0.57km/h, 0.36km/h,

0.22km/h, 0.14km/h, 0.09km/h, 0.03km/h},
(5.40)

which is equivalent to

∆x2 = {0.5m/s, 0.39m/s, 0.25m/s, 0.15m/s, 0.1m/s,

0.06m/s, 0.03m/s, 0.02m/s, 0.01m/s}.
(5.41)

2. For each element in (5.41), i.e. ∆x
(i)
2 , i = 1, ..., 9, and ∆x

(i)
1 = 0, i =

1, ..., 9, the problem (5.16) is solved off-line. The resulting Λ(i) and

Θ(i) , i = 1, ..., 9, are saved in look-up tables. Each value Θ(i) , i =

1, ..., 9, defines an invariant ellipsoid ξ(i) given by (5.33). The different

ellipsoids ξ(i), i = 1, ..., 9, are depicted in Fig. 5.9.
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Figure 5.9: Invariant ellipsoids.

• On-line steps

1.-2. At each time k, the smallest ellipsoid that contains the actual state

∆x(k), is used to select the corresponding Λ(i) and
(

Θ(i)
)−1

.
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3.-4. The closed loop control ∆u(k) = Λ(i)
(

Θ(i)
)−1

∆x(k) is applied to the

nonlinear discrete-dynamics (2.22) that has a mass variation of 20%

(see Fig. 5.8). The execution time is Ts = 0.2s.

The tracking response of Algorithm 3 is depicted, in green dashed line, in

Fig. 5.10 and Fig. 5.11, for the tracking of the velocity x∗
2(k) with respect to the

actual position of the vehicle. The tracking error ∆x2(k), is depicted in Fig. 5.12,

in green dashed line, with respect to the vehicle position. In Fig. 5.13, the input

for the nonlinear tracking ∆u(k) is also depicted in green dashed line.
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Figure 5.10: Closed-loop tracking response with a mass variation of 20%. Red
dashed line: reference x∗

2(k). Black solid line: tracking response of the on-line
solution of the problem (5.16) at each execution time. Green dashed line: tracking
response of the Algorithm 3.
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Figure 5.11: Detail of the closed-loop tracking response of Fig. 5.10.

From Fig. 5.10-5.13, it can be observed that the tracking task is achieved while

the constraints are satisfied. The performances of Algorithm 3 are acceptable
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Figure 5.12: Closed-loop tracking error ∆x2(k) with a mass variation of 20%. Red
dashed lines: ∆x2min(k) and ∆x2max(k). Solid black line: tracking error ∆x2(k)
of the on-line solution of the problem (5.16) at each execution time. Green dashed
line: tracking error ∆x2(k) of the Algorithm 3.
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Figure 5.13: Closed-loop tracking error ∆u(k) with a mass variation of 20%. Red
dashed lines: ∆umin(k) and ∆umax(k). Solid black line: tracking input ∆u(k) of
the on-line solution of the problem (5.16) at each execution time. Green dashed
line: tracking input ∆u(k) of the Algorithm 3.

even for a mass variation of 20%. It can be also observed that the performance

of Algorithm 3, based on invariant ellipsoids computed off-line (see Fig. 5.8), is

similar to that one of the solution of the problem (5.16) fully computed on-line

(see Fig. 5.3).

5.4.3 Comparison of the fully on-line MPC and explicit

MPC

The computational resources (computation time and memory) used on-line by

the fully on-line MPC approach (fully on-line computation of problem (5.16) in
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Section 5.3) and the explicit MPC (Algorithm 3 in Section 5.3.1), are related in

Table 5.1.

Table 5.1: On-line computational resources of the fully on-line MPC and explicit
MPC.

Method Computation time Memory used
Fully on-line computation of
problem (5.16) in Section 5.3 21.4ms 4768Bytes
Algorithm 3: explicit MPC
based on invariant ellipsoids 0.52ms 824Bytes

It can be observed that the computational time and the memory resources of

Algorithm 3, are much more smaller than those required to fully solve on-line the

problem (5.16) at each execution time. This result was expected since no LMIs is

solved on-line in Algorithm 3. Therefore, Algorithm 3 appears as a good candidate

to be implemented in real-time. However, Algorithm 3 does not includes the

parameter λ(k) in the control law, thus it is conservative. It would be interesting

to consider other MPC strategies, also suitable for real-time implementation,

that include the parameters λ(k) in a explicit way, so that conservativeness can

be reduced. To this end, in the following section, an alternative MPC strategy

for LPV systems is considered. This strategy is based on a Parameter Dependent

Lyapunov Function (PDLF) to include the parameter λ(k) explicitly in the control

law.

5.5 MPC for LPV systems with Parameter de-

pendent Lyapunov function

Despite of the availability of the time-varying parameter λ(k) in (5.1) at every

time k, it is neither included in the feedback control law (5.24), nor in the robust

Lyapunov function (5.23) used to stabilize the system. This makes the approach

highly conservative since, at each time k, only one Lyapunov function and a

unique corresponding gain are used to stabilise all the possible realizations of the

polytopic LPV system, no matters the actual value of the parameter λ(k) [66, 22].
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The same remark applies for the off-line approach in [68], described in Algorithm

3.

Regarding this issue, several approaches have been proposed to reduce the

conservativeness of the MPC problem for LPV systems. In particular, the works

of [66, 22], that explicitly include the parameter in the Lyapunov function by

introducing a Parameter Dependent Lyapunov Function (PDLF) in (5.23). Con-

sequently, the parameter λ(k) appears explicitly in the feedback control law

∆u(k) = F (k)∆x(k) with F (k) = F (λ(k)). The PDLF reads

V (∆x(k), λ(k)) = ∆xT (k)M(λ(k))∆x(k), M(λ(k)) > 0, (5.42)

with

M(λ(k)) = f1(λ(k))M1(k) + f2(λ(k))M2(k), (5.43)

being f1 and f2 defined as in (2.45), and

Mj(k) = γ(k)Θj(k)
−1, j = 1, 2. (5.44)

where γ(k) and Θj(k) are solutions of the LMIs convex optimization problem

presented in the following.

Consider the tracking costs Q and R, and the closed loop problem (5.13)

for the polytopic LPV system (5.1), subject to tracking constraints X∆ and U∆

given by (5.7). According to [66], this problem can be properly solved using the

parameter dependent feedback control law F (k) = F (λ(k)) and the PDLF (5.42),

as follows

min
Θ1,2(k), G1,2(k), Λ1,2(k)

γ(k), (5.45)

s.t.
[

1 ⋆

∆x(k) Θ1(k)

]

≥ 0, Θ1(k) > 0, (5.46)
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[

1 ⋆

∆x(k) Θ2(k)

]

≥ 0, Θ2(k) > 0, (5.47)













G1(k) +G1(k)
T −Θ1(k) ⋆ ⋆ ⋆

A1G1(k) +BΛ1(k) Θ1(k) ⋆ ⋆

Q1/2G1(k) 0 γ(k)I ⋆

R1/2Λ1(k) 0 0 γ(k)I













≥ 0, (5.48)













G1(k) +G1(k)
T −Θ1(k) ⋆ ⋆ ⋆

A1G1(k) +BΛ1(k) Θ2(k) ⋆ ⋆

Q1/2G1(k) 0 γ(k)I ⋆

R1/2Λ1(k) 0 0 γ(k)I













≥ 0, (5.49)













G2(k) +G2(k)
T −Θ2(k) ⋆ ⋆ ⋆

A2G2(k) +BΛ2(k) Θ1(k) ⋆ ⋆

Q1/2G2(k) 0 γ(k)I ⋆

R1/2Λ2(k) 0 0 γ(k)I













≥ 0, (5.50)













G2(k) +G2(k)
T −Θ2(k) ⋆ ⋆ ⋆

A2G2(k) +BΛ2(k) Θ2(k) ⋆ ⋆

Q1/2G2(k) 0 γ(k)I ⋆

R1/2Λ2(k) 0 0 γ(k)I













≥ 0, (5.51)

[

∆u2
maxI ⋆

Λ1(k)
T G1(k) +G1(k)

T −Θ1(k)

]

≥ 0, (5.52)

[

∆u2
maxI ⋆

Λ2(k)
T G2(k) +G2(k)

T −Θ2(k)

]

≥ 0, (5.53)
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[

∆y2maxI ⋆

(A1G1(k) +BΛ1(k))
T CT G1(k) +G1(k)

T −Θ1(k)

]

≥ 0, (5.54)

[

∆y2maxI ⋆

(A2G2(k) +BΛ2(k))
T CT G2(k) +G2(k)

T −Θ2(k)

]

≥ 0, (5.55)

Similarly that in (5.16), the symbol ⋆ denotes the corresponding block to rend

each matrix symmetric. Additionally, Θj(k) ∈ R
n×n, j = 1, 2, are symmetric

matrices, Gj(k) ∈ R
n×n and Λj(k) ∈ R

1×n, j = 1, 2. As in (5.16), the gain

γ(k) and the matrices Θj(k), Gj(k) and Λj(k), j = 1, 2, in (5.45) are denoted

as dependent on time k to emphasize that they are computed at each execution

time k.

The feedback control law that minimizes (5.45), is given by

∆u(k) = F (λ(k))∆x(k), (5.56)

with

F (λ(k)) = f1(λ(k))F1(k) + f2(λ(k))F2(k), (5.57)

where fj(λ(k)), j = 1, 2, are given by (5.6), and

Fj(k) = Λj(k)G
−1
j (k), j = 1, 2. (5.58)

• As it is demonstrated in [66], and following the same lines as in Section 5.3,

the LMIs constraints (5.46)-(5.51) guarantee that the Lyapunov function

V (∆x(k), λ(k)) in (5.42), is a strictly decreasing for any [A(λ(k+ i)) B] ∈
C, i ≥ 0. Thus, the asymptotic stability of the feedback control law (5.56)

is given.

• The constraints (5.52)-(5.53) guarantee that ∆u(k + i) ∈ U∆, i ≥ 0. The

constraints (5.54)-(5.55) guarantee that ∆y(k + i) ∈ Y∆, i ≥ 1 (see [66]).

The recursive feasibility of the problem (5.45) is proved in [66]. The recursive

feasibility stands that if the problem (5.45) is feasible for ∆x(k), then the feasible

solutions computed at time k are also feasible solutions for all the future states
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∆x(k + i), i ≥ 0, as long as the future parameter λ(k + i) measured at time

k + i, i ≥ 0, makes [A(λ(k + i)) B] ∈ C, i ≥ 0.

Notice that in the problem (5.45), there are at least 3pC+p2
C
LMIs constraints

to solve on-line, with pC the number of vertices in the polytope C. The number of

LMIs constraints involved in (5.45) is higher than the number of LMIs constraints

involved in (5.16) which is at least 2 + 2pC LMIs. Therefore, the computation

time and the required memory to solve (5.45) are expected to be higher than

those used to solve (5.16).

Having in mind the objective of a real-time implementation of the MPC strat-

egy, and inspired by Algorithm 3 of [68] based in a quadratic Lyapunov function,

in Section 5.6, a new explicit algorithm is developed for the problem (5.45). This

explicit algorithm includes the time-varying parameter λ(k), by resorting to the

PDLF (5.42), in the control law (5.56), obtaining a parameter dependent control

law. It also reduces the computational burden, since no on-line optimization of

LMIs is performed on-line. In Sections 5.7.2 and 5.8, the proposed approach is

applied to the Vir’volt vehicle.

5.6 Explicit MPC using the PDLF

The key idea of the explicit approach consists in solving off-line the problem

(5.45) for a finite number of the elements of the gridded state-space. The gains

Θj(k), Gj(k) and Λj(k), j = 1, 2, that are solutions of (5.45) are saved in look-up

tables. The look-up tables are used on-line to steer ∆x(k) to zero. Similarly that

in Algorithm 3, asymptotically stable invariant sets, but not necessarily ellipsoids,

will stabilize ∆x(k) to zero in an asymptotic way, even for the points ∆x(k) which

do not correspond to samples of the gridded state-space.

5.6.1 The asymptotically stable invariant set

In this section, a similar procedure to the one developed in Section 5.3.1 is carried

out. The objective is to demonstrate that the problem (5.45) admits a suitable

invariant set under the control law (5.56). This invariant set, that is not neces-

sarily an ellipsoid, conversely to the one found in Section 5.3.1.1, will be used to
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develop an explicit algorithm of the problem (5.45).

Notice that the LMIs (5.46) and (5.47) define the sets ξ1(k) and ξ2(k) as

follows

ξ1(k) = {∆x ∈ R
2 : ∆x(k)TΘ1(k)

−1∆x(k) ≤ 1}, (5.59)

and

ξ2(k) = {∆x ∈ R
2 : ∆x(k)TΘ2(k)

−1∆x(k) ≤ 1}, (5.60)

where Θ1(k)
−1 and Θ2(k)

−1 are solutions of the optimization problem (5.45) at

time k. The states ∆x(k) that simultaneously belong to ξ1(k) and ξ2(k), i.e. the

states ∆x(k) that belongs to the intersection between ξ1(k) and ξ2(k), satisfy

all the LMIs constraints (5.46)-(5.55). The intersection between ξ1(k) and ξ2(k),

denoted Ω1(k), reads

Ω1(k) = {∆x(k) ∈ R
2 : ∆x(k) ∈ ξ1(k) ∧∆x(k) ∈ ξ2(k)},

=
{

∆x(k) ∈ R
2 :
(

∆x(k)TΘ1(k)
−1∆x(k) ≤ 1

)

∧
(

∆x(k)TΘ2(k)
−1∆x(k) ≤ 1

)}

,

= ξ1(k)
⋂

ξ2(k).

(5.61)

Notice that although ξ1(k) and ξ2(k) describe ellipsoids, the intersection of ellip-

soids is not necessarily an ellipsoid.

If at time k + i, the control (5.56) is applied to a non-zero state ∆x(k + i)

that satisfies ∆x(k + i) ∈ Ω1(k + i), then in virtue of (5.1) the resulting state

∆x(k + i+ 1) reads

∆x(k + i+ 1) =
(

A(λ(k + i)) +BF (λ(k + i))
)

∆x(k + i),

=
(

A(λ(k + i)) +B (f1(λ(k + i))F1(k + i)

+ f2(λ(k + i))F2(k + i))
)

∆x(k + i),

=
(

A(λ(k + i)) +B
(

f1(λ(k + i))Λ1(k + i)G−1
1 (k + i)

+f2(λ(k + i))Λ2(k + i)G−1
2 (k + i)

)

)

∆x(k + i),

(5.62)

with Λ1(k+ i),G1(k+ i),Λ2(k+ i) and G2(k+ i) solutions of (5.45) at time k+ i.
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Due to the recursively feasibility of the problem (5.45), if the state ∆x(k+ i)

satisfies all the LMIs constraints (5.46)-(5.55), computed at time k + i, then the

state ∆x(k + i+ 1) also satisfies the constraints (5.46)-(5.55), computed at time

k + i. In particular ∆x(k + i+ 1) satisfies (5.46), i.e.

∆x(k + i+ 1)TΘ1(k + i)−1∆x(k + i+ 1) ≤ 1, (5.63)

and

∆x(k + i+ 1)TΘ2(k + i)−1∆x(k + i+ 1) ≤ 1, (5.64)

with Θ1(k+ i) and Θ2(k+ i) computed at time k+ i. Besides, the state feedback

control law (5.56) asymptotic stabilizes the system to the origin, thus

∆x(k+i+1)TΘ1(k+i)−1∆x(k+i+1) < ∆x(k+i)TΘ1(k+i)−1∆x(k+i), (5.65)

and

∆x(k+i+1)TΘ2(k+i)−1∆x(k+i+1) < ∆x(k+i)TΘ2(k+i)−1∆x(k+i). (5.66)

Therefore,

∆x(k+ i+ 1)TΘ2(k+ i)−1∆x(k+ i+ 1) < ∆x(k+ i)TΘ2(k+ i)−1∆x(k+ i) ≤ 1,

(5.67)

and

∆x(k+ i+ 1)TΘ2(k+ i)−1∆x(k+ i+ 1) < ∆x(k+ i)TΘ2(k+ i)−1∆x(k+ i) ≤ 1.

(5.68)

From (5.67) and (5.59) it holds that ∆x(k + i + 1) ∈ ξ1(k + i), i ≥ 0, and from

(5.68) and (5.60) it holds that ∆x(k+ i+1) ∈ ξ2(k+ i), i ≥ 0. Thus, using (5.61),

it is obtained that

∆x(k + i+ 1) ∈ Ω1(k + i), if ∆x(k + i) ∈ Ω1(k + i), i ≥ 0. (5.69)

Therefore, the set Ω1(k + i) is an asymptotically stable invariant set under the

closed-loop state feedback control ∆u(k) = F (λ(k))∆x(k).
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5.6.2 Algorithm of the explicit MPC based on PDLF

Similarly to Algorithm 3, if the problem (5.45) is solved off-line for a finite grid-

ding of the state-space ∆x̌ = {∆x(1),∆x(2), · · · ,∆x(j)}, the following correspond-
ing sets are obtained

Θ̌1 = {Θ(1)
1 ,Θ

(2)
1 , · · · ,Θ(j)

1 },
Θ̌2 = {Θ(1)

2 ,Θ
(2)
2 , · · · ,Θ(j)

1 },
Ǧ1 = {G(1)

1 ,G
(2)
1 , · · · ,G(j)

1 },
Ǧ2 = {G(1)

2 ,G
(2)
2 , · · · ,G(j)

2 },
Λ̌1 = {Λ(1)

1 ,Λ
(2)
1 , · · · ,Λ(j)

1 },
Λ̌2 = {Λ(1)

2 ,Λ
(2)
2 , · · · ,Λ(j)

2 },

(5.70)

where Θ
(i)
1,2, G

(i)
1,2 and Λ

(i)
1,2, i = 1, ..., j, are the solutions of (5.45) for ∆x(k) =

∆x(i), i = 1, ..., j. The sets Θ̌1, Θ̌2, Ǧ1, Ǧ2 Λ̌1 and Λ̌2, are saved in look-up

tables.

Notice that from (5.59) and (5.60), two corresponding ellipsoidal sets ξ
(i)
1 and

ξ
(i)
2 are obtained for each Θ

(i)
1 and Θ

(i)
2 , i = 1, ..., j, respectively. Thus, from

(5.61), for each Θ
(i)
1 and Θ

(i)
2 , i = 1, ..., j, a corresponding invariant set Ω

(i)
1 can

be obtained. Therefore, the set Ω̌1 = {Ω(1)
1 ,Ω

(2)
1 , · · · ,Ω(j)

1 } of invariant sets, is

obtained from the sets Θ̌1 and Θ̌2.

Remark 6 Notice that for all the states ∆x(k) ∈ ξ1(k)
⋂

ξ2(k) = Ω1(k), the

LMIs constraints (5.46)-(5.55) are feasible, but not necessarily optimal (the opti-

mal solution of (5.45) at time k belongs to Ω1(k), but not necessarily is the entire

set). However, the control

∆u(k) =

(

f1(λ(k))Λ
(i)
1

(

G
(i)
1

)−1

+ f2(λ(k))Λ
(i)
2

(

G
(i)
2

)−1
)

∆x(k) (5.71)

still being an admissible solution for (5.45), since (5.46)-(5.55) are satisifed if

∆x(k) ∈ Ω
(i)
1 .

The algorithm that sums up the overall explicit approach here proposed is detailed

in the following.
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Algorithm 4

• Off-line steps

1. For practical purposes, it is convenient to consider the gridding of only

one component ∆xi of ∆x, letting the remaining components constant.

Choose a set of values ∆x̌i = {∆x
(1)
i ,∆x

(2)
i , · · · ,∆x

(j)
i }, as far from the

origin as feasible the problem.

2. Solve (5.45) for each value ∆x(i), i = 1, ..., j, in the set of states ∆x̌.

3. Save in a look-up table the corresponding values of Θ
(i)
1 , Θ

(i)
2 , G

(i)
1 ,

G
(i)
2 Λ

(i)
1 , and Λ

(i)
2 , i = 1, ..., j, that solve (5.45) for each ∆x

(i)
i ∈ ∆x̌,

i = 1, ..., j.

• On-line steps

1. Measure ∆x(k) at time k.

2. Measure λ(k) and find fj(λ(k)), j = 1, 2, as given by (5.6), i.e.

f1(λ(k)) =
λmax − λ(k)

λmax − λmin

and f2(λ(k)) =
λ(k)− λmin

λmax − λmin

. (5.72)

3. Search in the look-up table the gains Θ
(i)
1 ∈ Θ̌1 and Θ

(i)
2 ∈ Θ̌2 such

that

Ω
(i)
1 =
{

∆x ∈ R
2 :

(

∆x(k)T
(

Θ
(i)
1

)−1

∆x(k) ≤ 1

)

∧
(

∆x(k)T
(

Θ
(i)
2

)−1

∆x(k) ≤ 1

)}

,

(5.73)

is the smallest invariant set that contains ∆x(k).

116



5. Real-time Robust Model Predictive Control for LPV

4. Apply

∆u(k) = F (i)(λ(k))∆x(k),

=
(

f1(λ(k))F
(i)
1 + f2(λ(k))F

(i)
2

)

∆x(k),

=

(

f1(λ(k))Λ
(i)
1

(

G
(i)
1

)−1

+ f2(λ(k))Λ
(i)
2

(

G
(i)
2

)

)

∆x(k).

(5.74)

5. Return to Step 1.

The proposed Algorithm 4, for the MPC using PDLF, is illustrated in the Sections

5.7.2 and 5.8.

5.7 Robust MPC for LPV systems with PDLF:

application to the Vir’volt vehicle

In this section, the approach of [66], presented in Section 5.5, and the proposed

Algorithm 4 of Section 5.6, are applied to the tracking problem of the Vir’volt

vehicle tracking the optimal driving strategy. Then, they will be compared in

terms of real-time capabilities. The conditions of the tracking task such as the

tracking constraints, the sampling time, the optimal reference, etc., are the same

that in Section 5.4.

Consider again the LPV representation (5.1) of the dynamics of the tracking

error ∆x(k). The tracking constraints imposed to the problem (5.45), are the

same than those imposed to the problem (5.16), i.e.

−2km/h ≤ ∆y(k) ≤ 2km/h and − 0.5A ≤ ∆u(k) ≤ 0.5A. (5.75)

The weighting matrices are Q = [0 0; 0 1]T and R = 1. The vehicle is required

to follow the driving strategy of Fig. 2.8. The control loop is closed with the

nonlinear discrete-dynamics (2.22) that has a mass variation of 20%, as in Section

5.4. The execution time is Ts = 0.2s.
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5.7.1 Robust MPC with PDLF with on-line computation

of LMIs

The tracking task is performed by fully solving the problem (5.45) on-line at each

execution time, and applying ∆u(k) = F (λ(k))∆x(k) (see Fig. 5.14).

Figure 5.14: Closed-loop implementation of the MPC for LPV systems using
PDLF [66]. The function that describes the velocity x2(k + 1) = f(x2(k), u(k))
is given by (2.22).

The solution of the problem (5.45) is depicted in Fig. 5.15 and 5.16, in black

solid line, for the tracking of the velocity x∗
2(k) according to the actual position

of the vehicle. The tracking error ∆x2(k), is depicted in Fig. 5.17, in solid black

line, with respect to the vehicle position. In Fig. 5.18, in solid black line, the

input for the nonlinear tracking ∆u(k) is depicted. A mass variation of 20%

has been imposed again to the vehicle dynamics. From Fig. 5.15-5.18 it can

be observed that the tracking performance is acceptable despite the disturbance

imposed in the mass. Besides, as will be shown later, the performances of the

MPC strategy (5.45) are better than those of the strategy (5.16), since the first one

is less conservative. Nevertheless, as in Section 5.4.1, the on-line solution of the

problem (5.45) at each execution time, is not suitable for real-time applications.

Therefore, in the following section, Algorithm 4 of Section 5.6, will be tested

as an alternative to be implemented in real-time. Indeed, Algorithm 4 is less

conservative that Algorithm 3 of Section 5.3.1, because the parameter λ(k) is

included explicitly in the control law, but requires less computational burden the

control strategy (5.45), .
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Figure 5.15: Closed-loop tracking response with a mass variation of 20%. Red
dashed line: reference x∗

2(k). Black solid line: tracking response of the on-line
solution of the problem (5.45) at each execution time.
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Figure 5.16: Detail of the closed-loop tracking response of Fig. 5.22.

0 500 1000 1500 2000 2500 3000

−2

−1

0

1

2

∆
x
2
[k
m
/h

]

x1[m]

Figure 5.17: Closed-loop tracking error ∆x2(k) with a mass variation of 20%.
Red dashed lines: ∆x2min(k) and ∆x2max(k). Solid black line: tracking error
∆x2(k) of the on-line solution of the problem (5.45) at each execution time.
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Figure 5.18: Closed-loop tracking error ∆u(k) with a mass variation of 20%. Red
dashed lines: ∆umin(k) and ∆umax(k). Solid black line: tracking input ∆u(k) of
the on-line solution of the problem (5.45) at each execution time.

5.7.2 Explicit MPC for LPV using PDLF

Consider now Algorithm 4 proposed in Section 5.6, with matrices Q and R as

stated at the beginning of Section 5.7, and constraints ∆ymax and ∆umax as

defined in (5.75). It is applied to Vir’volt dynamics as depicted in the block

diagram of Fig. 5.19.

Figure 5.19: Closed-loop implementation of Algorithm 4. The function that
describes the velocity x2(k + 1) = f(x2(k), u(k)) is given by (2.22).
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• Off-line steps

1. The sampling over the state ∆x is chosen by making ∆x1 = 0 and

∆x2 = [1.80km/h, 1.43km/h, 0.90km/h, 0.57km/h,

0.14km/h, 0.09km/h, 0.05km/h, 0.03km/h],
(5.76)

as in Section 5.4.

2. For each element in (5.76), i.e. ∆x
(i)
2 , i = 1, ..., 8, the problem (5.45)

is solved off-line, and the resulting Θ
(i)
1 , Θ

(i)
2 , G

(i)
1 , G

(i)
2 , Λ

(i)
1 , Λ

(i)
2 ,

i = 1, ..., 8, are saved in look-up tables.

Each Θ
(i)
1 and Θ

(i)
2 , i = 1, ..., 8, define the ellipsoids ξ

(i)
1 and ξ

(i)
2 , given by

(5.59) and (5.60), respectively. Those ellipsoids will be used on-line to find

the corresponding invariant set Ω
(i)
1 given by (5.61). In Fig. 5.20 and 5.21,

are depicted the ellipsoids ξ
(i)
1 and ξ

(i)
2 such that Ω

(i)
1 = ξ

(i)
1

⋂

ξ
(i)
2 , i = 1, ..., 8.

• On-line steps

1.-3. At each time k, find the smallest invariant set Ω
(i)
1 that contains the

actual state ∆x(k). The index (i) is used to select the corresponding

gains Λ
(i)
1 , Λ

(i)
2 , G

(i)
1 and G

(i)
2 .

4.-5. The control law

∆u(k) =

(

f1(λ(k))Λ
(i)
1

(

G
(i)
1

)−1

+ f2(λ(k))Λ
(i)
2

(

G
(i)
2

)−1
)

∆x(k),

(5.77)

is applied to the system. The tracking task is performed by applying

the closed-loop control to the nonlinear discrete-dynamics (2.22) that

has a mass variation of 20%. The execution time is Ts = 0.2s.
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Figure 5.20: Ellipsoids ξ
(i)
1 , i = 1, ..., 8.
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Figure 5.21: Ellipsoids ξ
(i)
2 , i = 1, ..., 8.

The tracking response of the off-line approach is depicted, in cyan dashed line,

in Fig. 5.22 and 5.23. The tracking error ∆x2(k), is depicted in Fig. 5.24, and in

Fig. 5.25, the input for the nonlinear tracking ∆u(k) is depicted in cyan dashed

line. From Fig. 5.22-5.25, it can be observed that the performance of the pro-

posed off-line approach (see Fig. 5.19), is similar to the performance of the on-line

solution of (5.45)(see Fig. 5.14), despite the mass variation of 20%.
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Figure 5.22: Closed-loop tracking response with a mass variation of 20%. Red
dashed line: reference x∗

2. Black solid line: tracking response of the on-line
solution of the problem (5.45) at each execution time. Cyan dashed line: tracking
response of Algorithm 4.
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Figure 5.23: Detail of the closed-loop tracking response of Fig. 5.22.

0 500 1000 1500 2000 2500 3000

−2

−1

0

1

2

∆
x
2
[k
m
/h

]

x1[m]

Figure 5.24: Closed-loop tracking error ∆x2(k) with a mass variation of 20%. Red
dashed lines: ∆x2min(k) and ∆x2max(k). Solid black line: tracking error ∆x2(k)
of the on-line solution of the problem (5.45) at each execution time. Cyan dashed
line: tracking error ∆x2(k) of Algorithm 4.
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Figure 5.25: Closed-loop tracking error ∆u(k) with a mass variation of 20%. Red
dashed lines: ∆umin(k) and ∆umax(k). Solid black line: tracking input ∆u(k) of
the on-line solution of the problem (5.45) at each execution time. Cyan dashed
line: tracking input ∆u(k) of Algorithm 4.

5.7.3 Comparison of fully on-line MPC based on PDLF

and explicit MPC based on PDLF

The computational resources (computation time and memory) used by each ap-

proach on-line are reported in Table 5.2. In Table 5.2, also are recalled the results

previously obtained in Table 5.1.

Table 5.2: On-line computational resources of the robust MPC for LPV systems
and the off-line approach.

Method Computation time Memory used
Fully on-line computation of
problem (5.16) in Section 5.3 21.4ms 4768Bytes
Algorithm 3: explicit MPC
based on invariant ellipsoids 0.52ms 824Bytes
Fully on-line computation of
problem (5.45) in Section 5.5 93.1ms 9928Bytes
Algorithm 4: Proposed explicit
MPC using the PDLF and
based on invariant ellipsoids 0.61ms 1968Bytes

From Table 5.2, and the results obtained previously, several facts can be

highlighted:

• The approach (5.45), which includes the PDLF, requires longer computation

time and larger memory resources that the approach (5.16), as expected,
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since the quantity of LMIs involved in (5.45) is higher.

• The approach (5.45) has a better performance in terms of speed of con-

vergence to the origin and smaller values for the performance cost γ, than

the strategy (5.16), since the approach (5.45) is less conservative. This is

illustrated in Fig. 5.26.
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Figure 5.26: Performance cost γ(k). Solid black line: MPC (5.16)[42]. Red
dashed line: MPC with PDLF (5.45)[66].

• Algorithm 4 requires less computational time and memory resources than

the strategy (5.45), as expected, since there are no LMIs involved in the

on-line solution of Algorithm 4.

• Algorithm 4 and the strategy (5.45) have very similar performances, as

was shown in Fig. 5.22-5.25. Therefore, the performance of Algorithm 4

is expected to be better than the performance of the strategy (5.16), and

thus of Algorithm 3, since Algorithm 4 does include the parameter λ(k)

explicitly in the control law.

• Algorithm 4 requires larger memory resources than Algorithm 3. However,

Algorithm 4 is still well suited to real-time implementation.

In the following section, Algorithm 4 will be embedded in a real-time device,

and its performances will be tested for the Vir’volt vehicle in the benchmark (see

Section 2.6).
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5.8 Explicit MPC for LPV using PDLF: appli-

cation to the benchmark

In this section, Algorithm 4 proposed in Section 5.6, is applied to the Vir’volt

vehicle within the benchmark described in Section 2.6. Recall that the dynamics

of the vehicle in the benchmark is a scaled version of the dynamics (2.6) and

(2.7), and it is given by (2.48) in Section 2.6, i.e.

x1(k + 1) = x1(k) + Tsx2(k),

x2(k + 1) = x2(k) + 1.1228TsIbatt(k)− 0.1125Tsx2(k)
2 − 0.1893Ts,

(5.78)

where u(k) = Ibatt(k). The vehicle in the benchmark is expected to track the

optimal driving strategy depicted in Fig. 2.14. The tracking error ∆x(k) is

represented by the LPV model (5.1) and (5.2). The tracking constraints imposed

to the problem (5.45), are

−3km/h ≤ ∆y(k) ≤ 3km/h and − 0.5A ≤ ∆u(k) ≤ 0.5A. (5.79)

The weighting matrices are Q = [0 0; 0 20]T and R = 1. The sampling period is

Ts = 0.2s.

Algorithm 4 is embedded in the microcontroller dsPIC33ep512mu810 of Microchip R©
, described in Section 2.6. Algorithm 4 is applied to the vehicle in the benchmark

as is described in the following.

• Off-line steps

1. The gridding over the state ∆x is chosen by making ∆x1 = 0 and

∆x2 = [4.17km/h, 3.60km/h, 2.27km/h, 0.36km/h,

0.22km/h, 0.09km/h, 0.03km/h].
(5.80)

2. For each element in (5.80), i.e. ∆x
(i)
2 , i = 1, ..., 7, the problem (5.45)

is solved off-line, and the resulting Θ
(i)
1 , Θ

(i)
2 , G

(i)
1 , G

(i)
2 , Λ

(i)
1 , Λ

(i)
2 ,

i = 1, ..., 7, are saved in the memory of the dsPIC.
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Each Θ
(i)
1 and Θ

(i)
2 , i = 1, ..., 7, define the ellipsoids ξ

(i)
1 and ξ

(i)
2 , given

by (5.59) and (5.60), respectively. Those ellipsoids will be used on-line to

find the corresponding invariant set Ω
(i)
1 given by (5.61). In Fig. 5.27 and

5.28, are depicted the the ellipsoids ξ
(i)
1 and ξ

(i)
2 such that Ω

(i)
1 = ξ

(i)
1

⋂

ξ
(i)
2 ,

i = 1, ..., 7.

• On-line steps

1.-3. At each time k, the smallest invariant set Ω
(i)
1 that contains the actual

state ∆x(k), is found and the corresponding gains Λ
(i)
1 , Λ

(i)
2 , G

(i)
1 and

G
(i)
2 are selected.

4.-5. The control law

∆u(k) =

(

f1(λ(k))Λ
(i)
1

(

G
(i)
1

)−1

+ f2(λ(k))Λ
(i)
2

(

G
(i)
2

)−1
)

∆x(k),

(5.81)

is computed and u(k) = ∆u(k)+u∗(k) is applied to the Vir’volt vehicle

(see Fig. 2.11 with Ibatt(k) = u(k)).

The computational resources (computation time and memory) used by Algorithm

4, embedded in the dsPIC, are reported in Table 5.3.

Table 5.3: Computational resources of Algorithm 4 embedded in the dsPIC.

ROM RAM Loop time
18% 2% 20ms

The tracking response of the explicit approach is depicted in Fig. 5.29. The

tracking error ∆x2(k), is depicted in Fig. 5.30. In Fig. 5.31, the control ∆u(k),

in (5.81), is depicted. The control law Ibatt(k) = ∆u(k) + u∗(k) applied to the

Vir’volt vehicle is depicted in Fig. 5.32. Additionally, in Fig. 5.33, the open

circuit voltage Voc of the battery is depicted.
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Figure 5.27: Ellipsoids ξ
(i)
1 , i = 1, ..., 7.
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Figure 5.28: Ellipsoids ξ
(i)
2 , i = 1, ..., 7.
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Figure 5.29: Closed-loop tracking response in the benchmark. Red dashed line:
reference x∗

2(k). Black solid line: measure of x2(k).
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Figure 5.30: Tracking error ∆x2(k) in the benchmark. Red dashed lines:
∆x2min(k) and ∆x2max(k). Solid black line: tracking error ∆x2(k) obtained from
the measure of x2(k).
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Figure 5.31: Control law ∆u(k) of the explicit algorithm. Red dashed lines:
∆umin(k) and ∆umax(k). Solid black line: control law ∆u(k).
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Figure 5.32: Input u(k) to the Vir’volt vehicle in the benchmark (Ibatt(k) = u(k)).
Red dashed lines: expected value u∗(k). Solid black line: input u(k).
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Figure 5.33: Open circuit voltage Voc of the battery.

The results reported in Table 5.3, correspond to the memory required to save

the look-up tables of the sets Θ
(i)
1 , Θ

(i)
2 , G

(i)
1 , G

(i)
2 , Λ

(i)
1 , Λ

(i)
2 , i = 1, ..., 7.

Besides, the optimal reference (x∗
1(t), x

∗
2(t), I

∗
batt(t)), t ∈ [0, tf ], was also saved in

the ROM, in order to perform the tracking on-line.

From Fig. 5.29-5.32, it can be observed that, despite some peaks of short

duration in ∆x2(k), the performance of the explicit Algorithm 4 is well suitable

to perform the tracking of the optimal driving strategy. The tracking is achieved

despite the internal frictions in the benchmark, the physical vibrations between

the vehicle and the inertia cylinder and the noise in the measurements. In Fig.

5.33, it can be observed that the open circuit voltage Voc of the battery, remains

constant during all the tracking task, therefore the initial hypothesis made in

(2.10) in Section 2.3.1, of Voc constant, is well verified. Hence, the solution of

the optimization problem (2.15) corresponds to the minimization of the energetic

consumption.

For illustrative purposes, consider now the same explicit Algorithm 4, carry

out for the Vir’volt vehicle in the benchmark, as above, but with tracking con-

straints as

−3km/h ≤ ∆y(k) ≤ 3km/h and − 2A ≤ ∆u(k) ≤ 2A, (5.82)

and the weighting matrix as Q = [0 0; 0 100]T . The rest is kept the same.

Notice that the gain Q is bigger than the one considered above, therefore a more

aggressive response is expected.
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Algorithm 4 is performed using the same gridding in the state space as above,

and finding a new set of ellipsoids and saving them in memory of the dsPIC. The

tracking response of the explicit approach with Q = [0 0; 0 100]T , is depicted in

Fig. 5.34. In Fig. 5.35, is depicted the tracking error ∆x2(k). In Fig. 5.36, the

control ∆u(k) is depicted. Finally, Ibatt(k) is depicted in Fig. 5.37.

Notice that from Fig. 5.31 and Fig. 5.36, the control law is more aggressive

in 5.36 with Q = [0 0; 0 100]T , as expected. And therefore, the tracking error

in 5.35 with Q = [0 0; 0 100]T , is in general smaller than the one in 5.30 with

Q = [0 0; 0 20]T .
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Figure 5.34: Closed-loop tracking response in the race benchmark. Red dashed
line: reference x∗

2(k). Black solid line: measure of x2(k).
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Figure 5.35: Tracking error ∆x2(k) in the benchmark. Red dashed lines:
∆x2min(k) and ∆x2max(k). Solid black line: tracking error ∆x2(k) obtained from
the measure of x2(k).
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Figure 5.36: Control law ∆u(k) of the explicit algorithm. Red dashed lines:
∆umin(k) and ∆umax(k). Solid black line: control law ∆u(k).
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Figure 5.37: Input u(k) to the Vir’volt vehicle in the benchmark (Ibatt(k) = u(k)).
Red dashed lines: expected value u∗(k). Solid black line: input u(k).

5.9 Conclusions

The tracking of the optimal driving strategy has been addressed through a LPV-

based MPC approach. The dynamics of the tracking error was given by a LPV

representation. The LPV framework has been motivated by two reasons: it pre-

serves the nonlinear features of the dynamics, and the synthesis of the control

law can be performed using efficient tools such as LMIs. An off-line strategy

well suited for real-time implementation has been proposed. It reduces the com-

putation times and the memory requirements needed to compute the parameter

dependent control law, in comparison with existing approaches like [66]. It was

shown that the resulting off-line approach is efficient for the present application.

The explicit approach was embedded in a microcontroller and tested on-board in

the benchmark.
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Chapter 6

Robust adaptive real-time

control based on an on-off driving

srategy

6.1 Introduction

In this chapter, a complementary scheme of driving strategy, with respect to

those presented in the previous part of this manuscript, is described. This scheme

treats cases that were not considered before such as a time-varying and unknown

dynamics, important traffic jam in the track and even a non constant efficiency of

the power converter. However, similarly to the previous control schema, a main

concern is still the compatibility with real-time implementation.

Recall the dynamics of the Vir’volt vehicle given by (2.6) and (2.7), i.e.

dx1(t)

dt
= x2(t),

dx2(t)

dt
=

ηktgr
mrw

Ibatt(t)−
1

2m
ρCdAfx2(t)

2 − gCr cos(θ(t))− g sin(θ(t)),

(6.1)

where the parameters m, η, kt, gr, rw, ρ, Cd, Af , g and Cr, if unknown, have

been identified off-line from experimental data. They are given as in Table 2.1 in

Section 2.2.2.

In the previous part of this manuscript, it has been assumed that the model
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(6.1) of the vehicle dynamics remains unchanged all along the race, or that

changes in the parameters are small enough. If so, then the tracking task can

benefit from the nominal robustness of the MPC strategy to sufficiently small dis-

turbances and uncertainties [63]. In that case, the nominal system dynamic was

identified using a nonlinear grey-box identification strategy (see Section 2.2.2),

and the optimal driving strategy was fully computed off-line (see Section 2.3).

Consider now, the case in which the aerodynamics resistance may vary in

virtue of the intensity and the direction of the wind during the race, but the

boundaries of the uncertainty introduced by this phenomenon are not known a-

priori. Besides, consider the case in which the rolling resistance coefficient is not

constant due to irregularities of the path, and the boundaries of the variation

in the rolling resistance are also not known a-priori. If the uncertainties in the

parameters involved in the dynamics were small enough and its boundaries were

known, then robust controllers, such as those described in the previous sections

are suitable to perform the tracking task. However, if the boundaries of the

uncertainties are too large, an amenable solution to handle this problem is the

use of an adaptive control, in which the control adapts itself according to the

actual value of the parameters involved in the dynamics.

Notice that the optimal driving strategy described in Section 2.3, which has

been fully computed off-line, considers that the presence of other vehicles in the

track does not require excessive braking or that they can be easily surpassed. This

is in practice true most of the time, because during the race, the other vehicles in

the track run slowly and there are just a few running at the same time. However,

if the traffic jam is important (as it happens near the finish line and the pit lane

entrance), it imposes strong breaking that may affect the validity of the optimal

driving strategy computed off-line. This case is precisely the one considered in

this chapter. Therefore, it might be necessary to recompute the driving strategy

on-line to achieve the minimal consumption.

On the other hand, consider the case when the efficiency of the power con-

verter may be better when working at full regime. Then the vehicle might be

driven using an on-off strategy in order to reduce energetic losses. This case

was not treated in previous part of this manuscript, where the efficiency of the

power converter was constant (or considered as almost constant) for the range of
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velocities involved in the driving strategy.

In this chapter, an adaptive robust control for the Vir’volt vehicle is presented.

This adaptive driving strategy consists in an on-line identification of the dynamics

(6.1) and a recomputation on-line of the on-off driving strategy that must achieve

the minimal consumption.

The main features of the approach here proposed are:

• Very low computational burden, implementable on low-cost embedded micro-

controller for real-time automatic control.

• Very low power consumption (less than 10 mW in average, about 15 J for

the race).

• Real time adaptability with respect to changes in dynamics, weather or

traffic conditions.

This chapter is organized as follows. In Section 6.2, the dynamics of the vehi-

cle is represented with three coefficients, and the procedure of the identification

of those parameters is described. In Section 6.3, an adaptive driving strategy is

presented. Its main feature is a variable time horizon (the horizon used for opti-

mization is deduced from the characteristics of the dynamics). It is shown that

the optimal driving strategies exhibit a very simple periodic behaviour. Exper-

imental results are presented in Section 6.4. This results were obtained during

the Shell Eco-Marathon Europe 2014. Finally, in Section 6.5, conclusions are

presented.

6.2 Parameter identification

Consider the dynamics of the Vir’volt vehicle (6.1). To be more general, the

expression dx2(t)
dt

, in (6.1), is written as an ordinary differential equation of first

degree. Then, (6.1) can be rewritten as follows

dx1(t)

dt
= x2(t),

dx2(t)

dt
= ax2(t)

2 + bx2(t) + c+
ηktgr
mrw

Ibatt(t),

(6.2)
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where a[1/m], b[1/s] and c[m/s2] are unknown real quantities that need to be

identified. At time t ∈ [0, tmax], the vehicle is in position x1(t) ∈ [0, x1total ]

(tmax is the total duration of the race and x1total is the total length of the race).

Hereafter, it is assumed that a < 0, which means that the aerodynamic drag

opposes to the movement of the vehicle (see 2.1).

Since the efficiency in the power converter is considered to be better when

working at full regime, an on-off strategy is proposed. If the vehicle is driven

using an on-off strategy, the expression (6.2) becomes

dx1(t)

dt
= x2(t),

dx2(t)

dt
= ax2(t)

2 + bx2(t) + c+
ηktgr
mrw

Ibattmax
u(t),

(6.3)

where Ibattmax
[A] is the maximum current of the battery, and the control u(t) ∈

{0, 1} is a piecewise constant function accounting for the state of the motor. If

the motor is off then u = 0 and if the motor is on then u = 1.

Since in practice, as will be described later, the deceleration phases are much

more longer than the acceleration phases (the acceleration phases may be too

short to acquire enough data to for proper identification), consider in (6.3) only

the deceleration of the vehicle (u = 0). Therefore, the parameters to be identified

are just a, b and c. The deceleration dynamics reads

dx2(t)

dt
= ax2(t)

2 + bx2(t) + c. (6.4)

In the following, it is shown that in the case when the velocity of the wind during

the race is not negligible, and in the case when the rolling resistance coefficient

may vary due to irregularities of the path, then the parameters b and c may vary

in time.

6.2.1 Problem formulation

Consider the forces reported on the scheme of Fig. 2.2, in Section 2.2.1. From

(2.1), in Section 2.2.1, the vehicle is mainly subject to three kind of forces during
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the deceleration, i.e.

m
dx2(t)

dt
= −Faerodynamics(t)− Frolling(t)− Fg(t). (6.5)

This forces are described as follows

• Aerodynamic force Faerodynamics(t): Consider the vector
−→
Vw(t), as the vector

of the velocity of the wind at time t. Consider also, the vector −→x2(t) of the

velocity of the vehicle, at time t. The component of
−→
Vw(t) that is collinear

with −→x2(t), at time t, is denoted as −→v (t) and is given by the dot product

of
−→
Vw(t) and −→x2(t). Due to the velocity of the wind

−→
Vw(t), the vehicle

undergoes a deceleration of the form

a1(x2(t)− v(t))2 + b1(x2(t)− v(t)), (6.6)

with v(t) = |−→v (t)|, and x2(t) − v(t) the total velocity of the vehicle, at

time t.

• Rolling resistance Frolling(t): The rolling resistance depends on the rolling

friction coefficient, the weight of the vehicle and the slope θ[rad] of the

track, assumed to be positive if the vehicle is going uphill and negative if it

is going downhill, at time t. If the rolling friction coefficient varies in time,

due for example to imperfections on the road, then the deceleration due to

the rolling resistance reads

c4(t) cos θ(t). (6.7)

The slope of the road is assumed to be known a-priori according to the

position of the vehicle in the track, but in general it may be unknown.

• Gravitational force Fg(t): The gravitational force depends on the slope of

the track at time t and on the weight of the vehicle. Due to the gravitational

force, the vehicle undergoes a deceleration (or acceleration according to the

sign of θ[rad]) of the form

c3 sin θ(t). (6.8)
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Plugging (6.6), (6.8), and (6.7) into (6.5), gives

dx2(t)

dt
= −a1(x2(t)− v(t))2 − b1(x2(t)− v(t))− c3 sin θ(t)− c4(t) cos θ(t). (6.9)

Since, in practice, the velocity of the wind is not larger than the velocity of the

vehicle, i.e. x2(t)− v(t) > 0, for all t, then (6.9) can be rewritten as

dx2(t)

dt
= −a1x2(t)

2+(2a1v(t)−b1)x2(t)−a1v(t)
2+b1v(t)−c3 sin θ(t)−c4(t) cos θ(t).

(6.10)

Notice that neither (6.8) nor (6.7) depends on the vehicle velocity. Comparing

(6.10) with respect to (6.4), it is obtained that

a = −a1,

b = b(t) = 2a1v(t)− b1,

c = c(t) = −a1v(t)
2 + b1v(t)− c3 sin θ(t)− c4(t) cos θ(t).

(6.11)

Therefore b and c may vary in time, if the wind during the race is not negligible

and important irregularities in the path are considered. Notice that the parameter

a is constant since it depends exclusively on the features of the vehicle, not on

the conditions of the race. Equation (6.4) can be rewritten as

dx2(t)

dt
= ax2(t)

2 + b(t)x2(t) + c(t). (6.12)

In the following subsections, a strategy to estimate the parameters a, b(t) and

c(t) from the deceleration behaviour of the vehicle is presented. First, the time-

invariant parameter a is identified off-line from experimental data. Next, the

parameters b(t) and c(t) are identified on-line as they vary in time.

6.2.2 Identification of parameter a

In the following, the time-invariant parameter a is identified off-line. The identi-

fied parameter a will be used later to identify b(t) and c(t) on-line.

The key idea is to measure the velocities x2(t0), x2(t1), x2(t2), x2(t3),..., at

time instants t0, t1, t2, t3,..., during the deceleration of the vehicle, and to use
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those measurements to find off-line the parameter a involved in (6.12). For the

sake of simplicity, the measurements will be uniformly spaced in time, i.e. t1−t0 =

t2 − t1 = t3 − t2 = ... . Hereafter, the following assumption holds.

Assumption 5 The race conditions such as wind, traffic, road features, etc., are

assumed to remain constant at least during four consecutive measurements of the

velocity, i.e. from x2(t0) to x2(t3), and therefore b(t0) = b(t1) = b(t2) = b(t3) and

c(t0) = c(t1) = c(t2) = c(t3).

Consider three velocities x2(t0), x2(t1) and x2(t2) which are measured during

the deceleration of the vehicle. It can be shown (see Appendix C.1) that from

the solution of the differential equation (6.12), the following linear equation is

obtained for b(t0) = b(t1) = b(t2) = b and c(t0) = c(t1) = c(t2) = c

[

x2(t1)
2(x2(t0) + x2(t2))− 2x2(t0)x2(t1)x2(t2)

]

a

+
(

x2(t1)
2 + x2(t0)x2(t2)

)

b+ [2x2(t1)− (x2(t0) + x2(t2))] c = 0.

(6.13)

Notice that in (6.13), there are three unknown parameters a, b and c. Then,

in principle, three equations are required to solve the system. If five velocities

x2(t0), x2(t1), x2(t2), x2(t3) and x2(t4) are measured, the following system of

three linear equations is obtained (b(t0) = b(t1) = b(t2) = b(t3) = b(t4) = b and

c(t0) = c(t1) = c(t2) = c(t3) = c(t4) = c)

[

x2(t1)
2(x2(t0) + x2(t2))− 2x2(t0)x2(t1)x2(t2)

]

a

+
(

x2(t1)
2 + x2(t0)x2(t2)

)

b+ [2x2(t1)− (x2(t0) + x2(t2))] c = 0,

(6.14)

[

x2(t2)
2(x2(t1) + x2(t3))− 2x2(t1)x2(t2)x2(t3)

]

a

+
(

x2(t2)
2 + x2(t1)x2(t3)

)

b+ [2x2(t2)− (x2(t1) + x2(t3))] c = 0,

(6.15)
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[

x2(t3)
2(x2(t2) + x2(t4))− 2x2(t2)x2(t3)x2(t4)

]

a

+
(

x2(t3)
2 + x2(t2)x2(t4)

)

b+ [2x2(t3)− (x2(t2) + x2(t4))] c = 0.

(6.16)

However, this system of equations does not admit an unique solution (the system

is not linearly independent), but an affine solution in which one quantity a, b

or c is imposed and the other ones are found. Therefore, only four measured

velocities, x2(t0), x2(t1), x2(t2) and x2(t3), and only two equations, i.e. (6.14)

and (6.15), are needed to estimate the affine solutions a, b and c.

On the other hand, notice that the equation (6.12) does have an unique so-

lution. And yet, if the imposed parameter (a, b or c) is not properly chosen, the

affine solution of the homogeneous linear equations (6.14) and (6.15) may not be

a solution of (6.12).

In the following, the measurements of x2(t0), x2(t1), x2(t2) and x2(t3), and

the systems of equations (6.14) and (6.15), are used to estimate the values a, b

and c that are also solution of (6.12), under Assumption 5. This will give the

parameter a that will remain constant during the race, since it does not depend

of the race conditions (see (6.11)).

6.2.2.1 Algorithm of the off-line identification

Consider the measurements x2(t0), x2(t1), x2(t2), x2(t3). Consider also an initial

non-zero value a(1) ∈ R. If a is fixed as a = a(1), then the linear system of

equations (6.14) and (6.15) has an unique solution denoted as b = b(1) and c = c(1).

For any other value a(s), such that a(s) = a(1)s, with s ∈ R, then the unique

solution of (6.14) and (6.15) is b(s) = b(1)s and c(s) = c(1)s.

The objective is to find the value s such that the solution a(s), b(s) and c(s), is

also solution of (6.12), with a(1), b(1) and c(1) known.

First, consider a fixed as a(1) = −1, then the system of equations (6.14) and
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(6.15), becomes

−
[

x2(t1)
2(x2(t0) + x2(t2))− 2x2(t0)x2(t1)x2(t2)

]

+
(

x2(t1)
2 + x2(t0)x2(t2)

)

b+ [2x2(t1)− (x2(t0) + x2(t2))] c = 0,

−
[

x2(t2)
2(x2(t1) + x2(t3))− 2x2(t1)x2(t2)x2(t3)

]

+
(

x2(t2)
2 + x2(t1)x2(t3)

)

b+ [2x2(t2)− (x2(t1) + x2(t3))] c = 0.

(6.17)

The system of equations (6.17) has an unique solution given by

a(1) = −1, b = b(1) and c = c(1). (6.18)

However, a(1), b(1) and c(1) are not necessarily solution of (6.12).

Let suppose that there exists s = s∗, such that the affine solution a(s∗), b(s∗)

and c(s∗) of (6.17), i.e.

a(s∗) = a(1)s
∗ = −s∗,

b(s∗) = b(1)s
∗,

c(s∗) = c(1)s
∗,

(6.19)

is also solution of (6.12) under Assumption 5.

It is possible to show (see (C.4) and (C.6) in Appendix C.1) that if a(s∗), b(s∗),

c(s∗) are solution of (6.12), then a(s∗), b(s∗) and c(s∗) verify

√

b(s∗)
2 − 4a(s∗)c(s∗)

=
1

t1 − t0



log





2a(s∗)x2(t1)−
√

b(s∗)
2 − 4a(s∗)c(s∗) + b(s∗)

2a(s∗)x2(t1) +
√

b(s∗)
2 − 4a(s∗)c(s∗) + b(s∗)





−log





2a(s∗)x2(t0)−
√

b(s∗)
2 − 4a(s∗)c(s∗) + b(s∗)

2a(s∗)x2(t0) +
√

b(s∗)
2 − 4a(s∗)c(s∗) + b(s∗)







 ,

(6.20)

where x2(t0) and x2(t1) are velocities measured at time t0 and t1. Plugging (6.19)
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into (6.20), gives

s∗
√

b(1)
2 − 4a(1)c(1)

=
1

t1 − t0



log





2a(1)x2(t1)−
√

b(1)
2 − 4a(1)c(1) + b(1)

2a(1)x2(t1) +
√

b(1)
2 − 4a(1)c(1) + b(1)





−log





2a(1)x2(t0)−
√

b(1)
2 − 4a(1)c(1) + b(1)

2a(1)x2(t0) +
√

b(1)
2 − 4a(1)c(1) + b(1)







 ,

(6.21)

from which

s∗ =
1

(t1 − t0)
√

b(1)
2 − 4a(1)c(1)



log





2a(1)x2(t1)−
√

b(1)
2 − 4a(1)c(1) + b(1)

2a(1)x2(t1) +
√

b(1)
2 − 4a(1)c(1) + b(1)





−log





2a(1)x2(t0)−
√

b(1)
2 − 4a(1)c(1) + b(1)

2a(1)x2(t0) +
√

b(1)
2 − 4a(1)c(1) + b(1)







 .

(6.22)

Therefore, the solution a(s∗) = −s∗ of (6.17), is also solution of (6.12) with s∗

given by (6.22). The identified parameter a(s∗) is kept, since its describes the

features of the vehicle. The parameters b and c need to be identified on-line since

they depend on the conditions of the race (see 6.11).

This is valid for any t0 and any t1 such that t0 < t1. In practice, to improve

the precision, it is important to avoid involving factors too small in the solution

(6.22) of s∗, and it will be preferable to make t1 − t0 not too small, so x2(t1) and

x2(t0) will be different enough (under Assumption 5).

6.2.3 Identification of parameters b and c

Once the parameter a = −s∗ has been identified off-line, the parameters b(t) and

c(t) in (6.12) can be identified on-line under Assumption 5.

Consider the on-line measurements x2(t0), x2(t1), x2(t2), x2(t3), and the sys-
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tem of linear equations (6.17) with a = a(s∗) = −s∗, i.e.

−
[

x2(t1)
2(x2(t0) + x2(t2))− 2x2(t0)x2(t1)x2(t2)

]

s∗

+
(

x2(t1)
2 + x2(t0)x2(t2)

)

b(t) + [2x2(t1)− (x2(t0) + x2(t2))] c(t) = 0,

−
[

x2(t2)
2(x2(t1) + x2(t3))− 2x2(t1)x2(t2)x2(t3)

]

s∗

+
(

x2(t2)
2 + x2(t1)x2(t3)

)

b(t) + [2x2(t2)− (x2(t1) + x2(t3))] c(t) = 0,

(6.23)

with b(t) and c(t) assumed constant for t ∈ [t0, t3] (see Assumption 5). Introduc-

ing the auxiliary variables

α̂1 =
[

x2(t1)
2(x2(t0) + x2(t2))− 2x2(t0)x2(t1)x2(t2)

]

s∗,

β̂1 =
(

x2(t1)
2 + x2(t0)x2(t2)

)

,

γ̂1 = [2x2(t1)− (x2(t0) + x2(t2))] ,

(6.24)

and

α̂2 =
[

x2(t2)
2(x2(t1) + x2(t3))− 2x2(t1)x2(t2)x2(t3)

]

s∗,

β̂2 =
(

x2(t2)
2 + x2(t1)x2(t3)

)

,

γ̂2 = [2x2(t2)− (x2(t1) + x2(t3))] ,

(6.25)

the system of equations (6.23) can be rewritten as

−α̂1 + β̂1b(t) + γ̂1c(t) = 0,

−α̂2 + β̂2b(t) + γ̂2c(t) = 0.
(6.26)

The solution of (6.26), and thus of (6.23), is

b(t) =
−α̂1γ̂2 + α̂2γ̂1

α̂1β̂2 − β̂1γ̂2
,

c(t) =
(α̂1)

2β̂2 − α̂1β̂1γ̂2 + α̂1γ̂2 − α̂2γ̂1

α̂1β̂2γ̂1 − β̂1γ̂1γ̂2
.

(6.27)

The algorithm that identifies on-line the parameters b(t) and c(t) involved in

(6.12), is summed up in the following.
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Algorithm 5

• Off-line steps

1. From the measurements x2(t0), x2(t1), x2(t2), x2(t3) performed during

the deceleration, solve (6.17) and find b(1) and c(1).

2. Using a(1) = −1, b(1) and c(1), solve (6.22) and find s∗.

3. Make a = −s∗.

• On-line steps

1. During the deceleration, measure x2(t0), x2(t1), x2(t2), x2(t3) at time

t0, t1, t2 and t3.

2. Using (6.24), (6.25) and (6.27), find b(t) and c(t).

3. Return to Step 1.

Once the dynamics has been identified on-line, a low consumption driving

strategy can be derived. This driving strategy will depend on the identified

parameters a, b(t) and c(t). The driving strategy must guarantee the lowest

energetic consumption.

6.3 Low consumption driving strategy

6.3.1 Problem formulation

Consider the dynamics (6.3), i.e.

dx1(t)

dt
= x2(t),

dx2(t)

dt
= ax2(t)

2 + b(t)x2(t) + c(t) +
ηktgr
rw

Ibattmax
u(t),

(6.28)
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where the parameter a has been identified off-line, and the parameters b(t) and

c(t) are identified on-line. Since u(t) ∈ {0, 1} is a piecewise constant function,

the dynamics (6.28) is considered as switching system.

In an on-off driving strategy, when the motor is off (u(t) = 0), the energy

consumption of the vehicle is reduced to a roughly constant residual consumption

of the electronics (a few milliwatts). When the motor is on (u(t) = 1), the

energy consumption of the vehicle goes up to 150W. For about 70% of the

time, the motor is off. In this case, the transmission parts (gears, chains,...) are

decoupled from the wheels and rapidly stop (the kinetic energy is dissipated by

the friction and the Joule effect in the motor). When the motor is switched on,

the transmission parts (gears, chains, ..) that were at rest, have to speed up in

order to reach the wheels velocity, before the coupling allows to the energy to be

transmitted from the motor to the wheels. The energetic cost of switching on the

motor will be denoted as Con, and it is about 10J.

For every admissible control u(t) in (6.28), the following energy cost can be

associated

C(u(t)) =

∫ tfmax

0

h(x2(t), u(t))dt+ Con ND(u(t)), (6.29)

where tfmax
[s] is the maximum time allowed to complete the race, h : [0,+∞) ×

{0, 1} → [0,+∞) is a C1 function, Con ≥ 0 ∈ R is the switching cost and

ND(u(t)) denotes the number of discontinuities in u(t).

Optimal control problem 2

The objective is to find a piecewise constant control u(t) that steers the position

of the vehicle x1(t), from its initial position x1(0) = 0, to the final position

x1(tf ) = x1total , where x1total [m] is the total distance to run, in a time tf such

that tf ≤ tfmax
, with tfmax

[s] the maximum time allowed to complete the race.

The piecewise constant control u(t) must minimize the cost (6.29), subject to the

dynamics (6.28) and with the velocity of the vehicle x2(t) subject to the following

constraints

x2(t) ≤ x2max, if the vehicle is in a straight line,

x2(t) ≤ x2curvemax
≤ x2max, if the vehicle is in a curve,

(6.30)
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where x2maxis the maximum velocity of the vehicle, and x2curvemax
is the maximum

velocity allowed in a curve to avoid the vehicle slipping over (for further details

refer to Section 2.3.2.1).

Regarding the solution of the Optimization problem 2, the following former

results on the optimal control of switched systems can be addressed.

6.3.2 Former results

Switching systems are widely present in most of the industrial processes [55]

and represent a major field of study in automatic control [20]. The optimal

control of such switched systems is now pretty well understood for linear dynamics

[59, 64, 37, 47].

For nonlinear dynamics, the case without switching cost, i.e. Con = 0 in

(6.29), has raised considerable attention, see for instance [35, 70, 14, 13, 44, 8].

When Con = 0, the optimization problem is classically tackled with the Pon-

tryaguin Maximum Principle (PMP), see for example [9] for an intrinsic formu-

lation.

Non smooth extensions of the PMP have been also developed to include the

case of non smooth trajectories or nonzero switching costs [65, 56].

Nevertheless, two main difficulties prevent the direct use of these results in

the present application.

• The first difficulty arises when modelling the dynamics. In the standard

frame of Lipschitz continuous dynamics, a vehicle with switched off motor

on a flat road will never be at rest because of the principle of non-intersection

of solutions. A more realistic modelling (where the vehicles can actually

stop) requires to consider less regular dynamics, which usually implies to

non-trivial technical subtleties. This explain that this approach is scarce in

practice (with few exceptions, such as [43] for instance).

• The second difficulty is the heavy computational burden. Even in the stan-

dard Lipschitz continuous framework, with a specially adapted algorithm

[38, 25, 26] and powerful computers, some dozen of seconds of computations
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are needed with a powerful desktop computer to compute the optimal strat-

egy of a 39 minutes run, and any perturbation (traffic, weather change,...)

requires a new computation. Additionally, on-line integration of the PMP

is not reasonable without a strong multi-core processor (≈ 50W in average,

about 100 kJ for the race). On the other hand, look-up tables with optimal

trajectories may be pre-computed off-line and stored in memory, but such

databases will be quite large: considering 1000 points for the position on

the track, 300 points for the speed, 600 points for the time and 10 points for

the wind speed and lead to about 2.109 entries. The construction of such a

look-up table requires a good knowledge of the geometry of the track and

the search in this base is time consumptive for low cost embedded devices

with limited bandwidth.

Since global optimization are out of reach, in the following section, a robust

control algorithm that solves on-line the Optimization problem 2, is presented.

6.3.3 Periodic low consumption driving strategy

The driving strategy here proposed will consist in letting the velocity x2(t) of

the vehicle periodically oscillate between two values Vmin and Vmax. Those values

will be find on-line from the dynamics of the vehicle, that is identified also on-

line. Vmin and Vmax will lead to the lowest energetic consumption. As will be

shown later, the computation of the periodic driving strategy will benefit of a low

computational cost. Hereafter the following assumptions hold.

Assumption 6

1. The track and weather conditions are continuous.

2. For u(t) constant in {0, 1}, and for every x1(t) and x2(t) in (6.28), the

Cauchy problem (6.28) with initial condition x1(t0) and x2(t0), at time t0,

admits a locally unique solution in positive time.

3. The friction losses increase with speed.
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4. The slope of the track and the wind action are never strong enough to

prevent the car to go forward.

5. The car goes faster when motor is switched on.

6. When motor is off, the velocity of the vehicle tends to zero.

7. The energy consumption is zero when the motor is off, positive when motor

is on.

8. The energy consumption increases with speed.

9. The switching cost is not so large, so the best strategy on long term is not

necessarily to keep full speed.

Define the average velocity V̄ , in the time interval t ∈ [t0, t1], as

V̄ =
1

t1 − t0

∫ t1

t0

x2(t)dt, (6.31)

with x2(t) absolutely continuous and u(t) piecewise constant, and x2(t0) = x2(t1)

and u(t0) = u(t1) (see Fig. 6.1). Notice that only trajectories for which the

final velocity x2(t1) is equal to the initial velocity x2(t0) and the final value of

the control u(t1) is equal to initial one u(t0), are considered. In particular, the

control u(t) has an even number of discontinuities in t ∈ [t0, t1].

A piecewise constant function u(t) ∈ {0, 1}, with t ∈ [t0, t1], is an admissible

control for the average speed V̄ if there exists a function x2(t) ∈ R, such that V̄

is the average speed of x2(t) in t ∈ [t0, t1].

Since the energy consumption is non-zero only when the motor is on, for an

admissible control u(t), with an average speed V̄ in t ∈ [t0, t1], the following cost

can be defined

C(u(t))[t0,t1] =
Con + Voc(t)Ibattmax

ton
t1 − t0

, (6.32)

where Con is the cost of turning on the motor, Voc(t) is the open circuit voltage

of the battery (assumed to be not necessarily constant but accessible at each

time t), Ibattmax
is the maximum current of the battery, and ton is the effective
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Figure 6.1: Periodic driving strategy.

time in which the motor is on in the time interval [t0, t1] (see Fig. 6.1). The

cost C(u(t))[t0,t1], in (6.32), is the average energy consumption used to run the

distance x1(t1)− x1(t0) = (t1 − t0)V̄ in time t1 − t0.

The driving strategy here proposed will consist in letting the velocity x2(t)

periodically oscillate between Vmin(t) and Vmax(t) properly chosen such that the

smallest C(u(t))[t0,t1] is obtained. The values Vmin(t) and Vmax(t) are computed

on-line at time t. The values Vmin(t) and Vmax(t) must ensure that the race is

finished in a time tf ≤ tfmax
. To this purpose, define the average speed V̄ ∗(t),

required at time t to finish the race in a time tf ≤ tfmax
, as follows

V̄ ∗(t) =
x1total − x1(t)

tfmax
− t

, (6.33)

where the position x1(t) of the vehicle is actually the travelled distance at time t.
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The values Vmin(t) and Vmax(t) such that the average velocity V̄ ∗(t) (required

at time t to finish the race on time) is obtained, read

V̄ ∗(t) =
Vmax(t)ton + Vmin(t)toff

ton + toff
, (6.34)

where toff is the effective time in which the motor is off (see Fig. 6.1). The values

Vmax(t), Vmin(t), ton and toff , are unknown. In the following, an on-line iterative

algorithm to find Vmax(t) and Vmin(t) such that V̄ ∗(t) is obtained at time t, is

described. This algorithm will use the dynamics that has been identified with

Algorithm 5 in Section 6.2.3.

Algorithm 6

1. Measure x1(t) at time t and compute V̄ ∗(t) using (6.33).

2. If V̄ ∗(t) ≥ min{x2curvemax
, x2max

}, according to the actual position x1(t) of

the vehicle (see (6.30)), fix Vmax(t) = min{x2curvemax
, x2max

} and Vmin(t) =

Vmax(t) − δ, where δ is a small enough constant (δ = 0.5m/s), and go to

Step 8. If not, if V̄ ∗(t) < min{x2curvemax
, x2max

}, choose arbitrarily a value

Vmin(t) such as Vmin(t) < V̄ ∗(t), and go to Step 3.

3. Choose arbitrarily a value Vmax(t) such that Vmax(t) > V̄ ∗(t).

4. Use the identified parameters a, b(t) and c(t) (identified with Algorithm

5 at time t) to find ton when the motor is on. The time ton is the time

that will take the system to go from x2(t0) = Vmin to x2(t1) = Vmax, with

t1 − t0 = ton. From the solution of (6.28), with u(t) = 1, the time ton is
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given by (see Appendix C.1)

ton =
1

√

b(t)2 − 4a
(

c(t) + ηktgr
rw

Ibattmax

)









log









2aVmax(t)−
√

b(t)2 − 4a
(

c(t) + ηktgr
rw

Ibattmax

)

+ b(t)

2aVmax(t) +

√

b(t)2 − 4a
(

c(t) + ηktgr
rw

Ibattmax

)

+ b(t)









−log









2aVmin(t)−
√

b(t)2 − 4a
(

c(t) + ηktgr
rw

Ibattmax

)

+ b(t)

2aVmin(t) +

√

b(t)2 − 4a
(

c(t) + ηktgr
rw

Ibattmax

)

+ b(t)

















.

(6.35)

5. Use the identified parameters a, b(t) and c(t) to find toff , that is the time

that will take the system to go from x2(t0) = Vmax to x2(t1) = Vmin, with

t1− t0 = toff and the motor off. From the solution of (6.28), with u(t) = 0,

the time toff is given by (see Appendix C.1)

toff =
1

√

b(t)2 − 4ac(t)



log





2aVmin(t)−
√

b(t)2 − 4ac(t) + b(t)

2aVmin(t) +
√

b(t)2 − 4ac(t) + b(t)





−log





2aVmax(t)−
√

b(t)2 − 4ac(t) + b(t)

2aVmax(t) +
√

b(t)2 − 4ac(t) + b(t)







 .

(6.36)

6. Use Vmax(t), Vmin(t), ton and toff to solve

V̄ (t) =
Vmax(t)ton + Vmin(t)toff

ton + toff
. (6.37)

7. If V̄ (t) < V̄ ∗(t), choose a bigger Vmax(t) and return to Step 1. If V̄ (t) > V̄ ∗(t),

choose a smaller Vmax(t) and return to Step 1. Repeat using a search by

dichotomy until V̄ (t) = V̄ ∗(t). If V̄ (t) = V̄ ∗(t), go to Step 8.
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8. Keep Vmax(t), Vmin(t), ton and toff .

Notice that, until now, only the values Vmax(t) and Vmin(t) have been found.

This values guarantee that the average velocity V ∗(t) is obtained and therefore the

race is finished on time. However, nothing has been said yet about the energetic

cost (6.32) of using the control u(t) described by the Vmax(t), Vmin(t), ton and

toff that have been found. In the following, it is presented an on-line iterative

algorithm that will allow to find the Vmax(t), Vmin(t), ton and toff such that the

smallest cost C(u(t))[ton] is obtained for a gridding in the state-space. Since this

iterative algorithm uses Algorithm 6, the values Vmax(t), Vmin(t), ton and toff will

also guarantee that the race is finished on time.

Algorithm 7

1. Measure x1(t) at time t and compute V ∗(t) using (6.33).

2. Choose a set of n values for Vmin(t) uniformly spaced from V̄ ∗(t), as follows

V̌min = {V̄ ∗(t) − ǫ, V̄ ∗(t) − 2ǫ, V̄ ∗(t) − 3ǫ, ..., V̄ ∗(t) − nǫ}, with ǫ chosen to

have enough elements in V̌min to find the smallest cost, e.g. ǫ = 1.8m/s.

3. For each element V
(i)
min ∈ V̌min, i = 1, ..., n, perform Algorithm 6 and find

V
(i)
max, V

(i)
min, t

(i)
on and t

(i)
off , i = 1, ..., n.

4. For each t
(i)
on, i = 1, ..., n, find the cost

C(u(t))
t
(i)
on

=
Con + Voc(t)Ibattmax

t
(i)
on

t
(i)
on

. (6.38)

5. Choose the quantities V
(j)
max, V

(j)
min, t

(j)
on and t

(j)
off , j ∈ {1, ..., n}, such that

C(u(t))
t
(j)
on

is the smallest cost.

6. Apply the on-off control u(t) described by V
(j)
max, V

(j)
min, t

(j)
on and t

(j)
off .

7. Return to Step 1.
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The overall algorithm that articulates the on-line identification process (Al-

gorithm 5) and the on-line computation of the low consumption driving strategy

(Algorithm 6 and Algorithm 7) is shown in Figure 6.2. It was implemented on-

board of the Vir’volt vehicle during the Shell Eco-Marathon 2014. In the following

section, the results obtained during the Shell Eco-Marathon 2014 are presented.

Figure 6.2: Robust adaptive real-time control based on an on-off driving strategy.
The total computation time is 22.4ms
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6.4 Robust adaptive real-time control based on

an on-off driving strategy: application to

the Vir’volt vehicle

6.4.1 Off-line identification of the parameter a

The off-line procedure of Algorithm 5, which corresponds to the off-line procedure

described in Section 6.2.2.1, has been applied to a long deceleration in order to

identify the parameter a involved in the dynamics (6.12). The long deceleration

corresponds to a test run realized in April 2014 in the circuit of Saint-Dié-des-

Vosges, France. The identification of the parameter a was performed with 30

time samples taken between t = 690s and t = 720s (see Fig. 6.3), and applying

least squares. The following quantities were found

a = −0.0010642,

b = −0.0000023,

c = −0.0347565.

(6.39)

The identified parameters a, b, and c, were used to reconstruct the velocity x2(t)

using the dynamics (6.2) and under Assumption 5 (b(t0) = b(t1) = .... = b(t30)

and c(t0) = c(t1) = ... = c(t30)). The reconstructed velocity is depicted in

Fig. 6.3. The maximal gap between the measured velocity and the reconstructed

velocity is 0.13m/s, the maximal relative error (equal to the gap between two

velocities divided by the measured velocity) is 2.35%. The average relative error

(arithmetical mean of the relatives errors for the 30 samples) is 0.6%.

The good reconstruction performance is explained by two smoothing factors:

1. The first smoothing factor occurs during the solution of the linear system

(6.17) for 30 samples in the least square sense. The more samples used, the

smoother the result will be.

2. The second smoothing factor lies in the scaling procedure (computation of

s∗ in Step 2 of the off-line identification in Algorithm 5). The further the

first and the last samples are, the best the results will be.
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Figure 6.3: Deceleration test performed in Saint-Dié-des-Vosges, France, in April
2014. Black line: measured velocity. Red dashed line: the reconstructed velocity
using the parameters identified on-line.

The parameter a in (6.39) is kept. The parameters b and c will be identified

on-line. In the following are presented the results obtained when the adaptive

algorithm depicted in Fig. 6.2 was applied during the Shell Eco-Marathon per-

formed in May 2014 in Rotterdam.

6.4.2 On-line adaptative real-time control

The control scheme described in Fig. 6.2, was implemented on-board on a micro-

controller dsPIC33ep512mu810 of Microchip R© (see Section 2.6) during the Shell

Eco-Marathon Europe 2014, that took place in Rotterdam, ND, from May 15th

to May 18th. The overall on-line algorithm, corresponding to Fig. 6.2, imple-

mented on-board is summarized in the following.

Algorithm 8

On-line steps:

1. Identification of parameters b(t) and c(t) (On-line steps of Algorithm 5):

The parameters b(t) and c(t) involved in (6.12) are estimated on-line, at

each time t, from the last 3 seconds of deceleration, by making t1 − t0 =

t2 − t1 = t3 − t2 = 1s and using the parameter a identified off-line and

available in (6.39) (see the on-line steps of Algorithm 5).
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2. Estimation of the average velocity V ∗(t): Algorithm 6 and the identified

parameters a and b(t) and c(t) are used to find V̄ ∗(t), at time t.

3. Estimation of the driving strategy with the smallest energetic consumption:

Algorithm 7 is applied to the set of values V̌min = {V̄ ∗(t)− 1.8m/s, V̄ ∗(t)−
3.6m/s, V̄ ∗(t) − 5.4m/s, ..., V̄ ∗(t) − 14.4m/s}, with ǫ = 1.8m/s and n = 8,

Con = 10J and Ibattmax
= 6.7A.

4. The on-off strategy u(t) with the smallest energetic cost C(u(t))ton is applied

to the vehicle and the process is repeated from Step 1 until the vehicle

reaches to the finish line (see Fig. 6.2).

The on-board implementation is sketched in Fig. 6.4. The standard 32kHz os-

cillator in the dsPIC, the bike velocity sensor in the Vir’volt vehicle and GPS

receiver, also in the Vir’volt vehicle, provided (respectively) the current time,

velocity and position needed by Algorithm 8. The total time that took to the

Algorithm 8 to compute the on-off strategy, from Step 1 to Step 4, was 22.4ms.

The computational resources (computation time and memory) used by Algorithm

8, embedded in the dsPIC, are reported in Table 6.1. Concerning the ROM, the

Figure 6.4: On-board implementation of the robust adaptive real-time control
during the Shell Eco-Marathon 2014.

Table 6.1: Computational resources of Algorithm 8 embedded in the dsPIC.

ROM RAM Loop time
2% 1.53% 22.4ms
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results reported in Table 6.1 are smaller than the required ROM memory for the

Algorithm 4 (see Table 5.3 in Section 5.8), since Algorithm 8 does not require

any look-up table, nor a tracking reference precomputed off-line.

The official results of the EMT prototype measured in the 2014 edition of

the Shell Eco-Marathon are presented in Table 6.2, together with the first result

obtained in the Shell Eco-Marathon of the year 2013.

Table 6.2: Comparisons of the official results for the Vir’volt prototype at Shell
Eco-Marathon of years 2013 (manual command) and 2014 (automatic control of
Algorithm 8 embedded on-board).

2013 2014
1st run 1st run 2nd run

Run duration
expected 35m 00s 36m 00s 38m 30s
realized 36m 01s 36m 10s 38m 31s

Consumption 112 742 J 120 150 J 107 946 J

It can be noticed from Table 6.2, that the consumption performances of Al-

gorithm 8 are comparable with performances obtained by human drivers, which

were specifically trained to perform a low consumption driving strategy computed

off-line. However, during the race in 2014, the driver was able to focus in other

aspects of the driving task such as surpassing other vehicles on the track and

positioning properly the vehicle before entering in a curve, while the on-board

control performed the on-off low consumption driving strategy.

The real-time response of Algorithm 8 (see Fig. 6.2) embedded on-board,

is depicted in Fig. 6.5-6.9. It can be observed that the velocity x2(t) oscillates

between Vmin(t) and Vmax(t). The average velocity V̄ ∗(t) is recomputed as Vmin(t)

and Vmax(t) change in time. In Fig. 6.6, it can be observed that during the

acceleration phases, the values of Vmin(t) and Vmax(t) remain constant, since

they are only recomputed during the deceleration of the vehicle. The continuous

actualization of the target average velocity V̄ ∗(t) makes the strategy of Algorithm

8 extremely robust. Not only the disturbances are taken into account in the

computation of the new driving strategy, but also the actual value of the voltage

Voc(t) is used to compute the actual cost of the on-off strategy according to the

charge remaining in the battery. Thus, robustness is a central outcome provided
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by the embedded control.
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Figure 6.5: Real-time response of the embedded robust adaptive control. Black
line: x2(t). Red line: Vmin(t). Blue line: Vmax(t).
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Figure 6.6: Detail of Fig. 6.5 in the interval t ∈ [488, 827].
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Figure 6.7: Real-time response of the embedded robust adaptive control according
to the position. Black line: x2(t). Red line: Vmin(t). Blue line: Vmax(t).
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Figure 6.8: Control response u(t) of the embedded robust adaptive control in the
interval t ∈ [488, 827].
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Figure 6.9: Open circuit voltage of the battery Voc. The total variation in the
voltage of the battery Voc during all the race, corresponds to a variation of 4.16%
of the voltage of the battery fully charged.

6.5 Conclusions

A real-time adaptive driving strategy to achieve a low consumption has been

presented. Real life implementation on a competition prototype showed good

agreement between the theoretical analysis and the effective results. The con-

sumption performances are comparable with performances obtained by highly

trained human drivers. All the computations are done on board, in real-time,

with a low cost micro controller, for a limited energy budget.

Among the various advantages of the approach, it can be stressed the dramatic

safety improvement for the driver (the driver does not need to concentrate on the

velocity) and the robustness of the command that allows effective recovering on

optimal timing after traffic perturbations.
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Chapter 7

General conclusions and
Perspectives

The main objective of this thesis was to propose controlled driving strategies for

an electric vehicle prototype that must achieve a minimal energetic consumption.

The prototype under consideration is named Vir’volt and is involved every year in

the Shell Eco-Marathon European race. The main issue, which can be considered

as the guiding principle of this work, is to propose controlled driving strategies

which can be embedded into the digital devices of the vehicle. As a result, the

driving strategies must be compatible with real time constraints, limited memory

and computational capacities of the electronic equipment. The computation of

the strategies must require itself a low power consumption. Beyond the real-time

considerations, the robustness of the control was also a concern.

The main contributions of the work can be sum up as follows:

• A suitable nonlinear model of the electric vehicle has been obtained. The

model involved physical equations with parameters estimated from experi-

ments conducted on the vehicle. By suitable, it is meant a model fulfilling

the trade-off complexity/precision needed for real-time control purposes.

• The first overall approach has consisted in deriving, first, an optimal driving

strategy by solving off-line an optimization problem. The problem amounts

to minimizing a cost subject to constraints such as the dynamics of the ve-
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hicle, the physical constraints on the vehicle and the race (track profile and

length, maximal duration of a run, etc.). As a second step, robust track-

ing methods of the optimal driving strategy have been proposed. Mainly

motivated by their robustness and constraint handling properties, several

Model Predictive Control tracking strategies have been detailed.

– A MPC tracking strategy based on a linearised model around an op-

erating point has been applied to the vehicle in simulation. Time-

invariant constraints in the form of polytopic sets, have been con-

sidered on the input and the state. The asymptotic stability of the

control law has been guaranteed by resorting to an invariant set as an

admissible terminal constraint.

– Then, motivated by the peculiarities induced by the tracking problem,

time-varying constraints have been considered, again in a polytopic

form. The complexity of the tracking strategy has been preserved,

compared to the time-invariant case, by resorting to an homothetic

transformation of a nominal invariant set, guaranteeing the asymptotic

stability. The resulting MPC tracking strategy has been assessed on

the model of the Vir’volt vehicle in simulation.

– To capture the nonlinearities of the dynamics, a LPV model has been

further considered. A MPC strategy for LPV systems has been pro-

posed. The contribution that must be pointed out is that the approach

is well suited for real-time applications, since it does not involve the

on-line solution of any Linear Matrix Inequality (LMI) in the compu-

tation of the control law. The LMIs guarantee the stability and the

constraints fulfilment. The performances of the approach, in terms of

real-time applicability and robustness, have been tested with success

on the benchmark for the Vir’volt vehicle.

• The principle of the second approach differs from the first one in the sense

that the optimal driving strategy is computed on-line so that it can be

adapted to a time-varying context. This is precisely the case when there

is traffic jam during the race and when phenomena such as wind, rain
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and path irregularities are considered. The practical consideration that the

efficiency of the power converter may not be optimal on all the operating

range has been also taken into account. This motivated an on-off strategy.

The resulting on-off adaptive strategy requires an identification performed

on-line of the model of the vehicle and of the disturbances. The robust

adaptive control had been embedded in a dsPIC device on-board of the

Vir’volt vehicle, and had been tested with success during the Shell Eco-

Marathon 2014. It must be stressed the considerable performances in terms

of real-time applicability and robustness.

The publications related to this work are listed below:

• T. Manrique, M. Fiacchini, T. Chambrion, and G. Millerioux.

MPC-based tracking for real-time systems subject to time-varying poly-

topic constraints. In Optimal Control Applications and Methods (OCAM),

John Wiley and Sons (2014) (To be published in 2015).

• T. Manrique, M. Fiacchini, T. Chambrion, and G. Millerioux.

MPC tracking under time-varying polytopic constraints for real-time appli-

cations. In European Control Conference (ECC), 2014. Strasbourg, France,

24 - 27 June 2014. DOI: 10.1109/ECC.2014.6862584.

• T. Manrique, M. Fiacchini, T. Chambrion, and G. Millerioux.

MPC for a low-consumption electric vehicle with time-varying constraints.

In IFAC Joint Conference, 2013. Grenoble, France, 04 - 06 February 2013.

DOI: 10.3182/20130204-3-FR-2033.00213.

• T. Manrique, H Malaise, M. Fiacchini, T. Chambrion, and G. Mil-

lerioux. Model predictive real-time controller for a low-consumption elec-

tric vehicle. In International Symposium on Environment-Friendly Energies

and Applications IEEE (EFEA), 2012. Newcastle, UK, 25 - 27 June 2012.

DOI: 10.1109/EFEA.2012.6294080. (Best paper award).
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Perspectives

The results obtained in this thesis, can be further improved by considering the

following alternatives within the tracking task.

• In the tracking task subject to polytopic constraints X∆ and U∆, if the

uncertainties in the dynamics of the vehicle, the mismatches between the

nonlinear model and the linearised model, and the actual disturbances, all

of them being assumed to be bounded within a polytope W , they can be

included explicitly in the dynamics through the disturbance w as

∆x(k + 1) = A∆x(k) +B∆u(k) +Dw, (7.1)

where w ∈ W , and W ∈ R
n is the set of admissible disturbances. How-

ever, since the disturbances are considered to be persistent, then in the

best case scenario, the tracking error can be only steered to a neighbor-

hood of the origin. Besides, due to the presence of constraints X∆ and

U∆, the disturbances may lead to infeasibility and therefore to instability,

if the MPC strategy is solved using only the nominal system (with w = 0).

Therefore, a robust MPC strategy is required to guarantee feasibility de-

spite the persistent disturbances w. Several approaches tackle this problem,

see [24, 54, 31, 46] to mention a few. The main line of those approaches

consists in iterating the disturbances forward in time, building a sequence

of admissible regions around the nominal prediction (with w = 0). Then,

the MPC problem is solved with tighter constraints to guarantee that the

tracking task fulfils the constraints imposed to the real system (7.1), and

thus stability can be guaranteed. This approaches are known as Tube-based

MPC. The approaches of [24, 54, 31] may be adapted to the present tracking

task and used to include the model mismatches and the nonlinearities of

the dynamics. Time-varying polytopic constraints may also be considered

using a robust invariant set.

• Regarding the energetic efficiency of the MPC tracking strategy, the MPC

problem is continuously recomputed at each sampling time, even if the ref-

erence and the problem conditions (disturbances, constraints, etc.) remain
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unchanged. This implies that a constant energetic consumption is con-

stantly required by the on-board computation of the control law, even if

the control law can be kept constant and no recomputing is required. To

tackle this problem, a Self-triggered MPC [15, 29, 28] may be introduced

within the closed-loop. This controller allows to compute the MPC strat-

egy only when is necessary, this is, only when the conditions of the task

(tracking error, disturbances, etc.) get outside a set considered as the set

of acceptable conditions.

• The adaptive real-time control strategy is highly robust, since it identifies

on-line the dynamics of the vehicle. Although it is not straightforward, the

optimality and the robustness can be formally demonstrated. Moreover, an

event-triggered actualization of the strategy, similar to the one mentioned

above for the MPC-based tracking, could be implemented to further reduce

the computational burden.

• In the actual application, only an electrical source of energy is considered.

However, the vehicle can be also equipped with additional energy sources

such as solar, hydrogen, fuel, etc. Those energy sources can be used in a

combined way to improve the energetic consumption. Once the vehicle has

a hybrid energy source, the problem of the optimal driving strategy must

be reformulated in order to achieve the minimal consumption. The control

strategies must be also reformulated to take into account the hybrid nature

of the energy.
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Appendix A

Rotterdam’s Ahoy circuit
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Figure A.1: Rotterdam’s Ahoy circuit.
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Figure A.2: Detail of Rotterdam’s Ahoy circuit.
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Appendix B

Proofs of Chapter 5

B.1 Schur complement

The following nonlinear convex inequality

Q(x)− S(x)R(x)−1S(x)T ≥ 0, (B.1)

where R(x) > 0, Q(x) = Q(x)T and R(x) = R(x)T , is equivalent to the following

Linear Matrix Inequality (LMI) (see [19])

[

Q(x) S(x)

S(x)T R(x)

]

≥ 0. (B.2)

B.2 Proof of equation (5.27)

After expanding (5.18) and (5.19), by means of the Schur complement, it is

obtained that

Θ(k)− γ(k)−1
(

Q1/2Θ(k)
)T (

Q1/2Θ(k)
)

− γ(k)−1
(

R1/2Λ(k)
)T (

R1/2Λ(k)
)

−
(

AjΘ(k) +BΛ(k)
)T

Θ(k)−1
(

AjΘ(k) +BΛ(k)
)

≥ 0, j = 1, 2.

(B.3)

169



Pre and post-multiplying by (Θ(k)−1)
T
and Θ(k)−1, respectively, the expression

(B.3) becomes

(

Θ(k)−1
)T

Θ(k)Θ(k)−1 − γ(k)−1
(

Q1/2Θ(k)Θ(k)−1
)T (

Q1/2Θ(k)Θ(k)−1
)

− γ(k)−1
(

R1/2Λ(k)Θ(k)−1
)T (

R1/2Λ(k)Θ(k)−1
)

−
(

AjΘ(k)Θ(k)−1 +BΛ(k)Θ(k)−1
)T

Θ(k)−1
(

AjΘ(k)Θ(k)−1

+BΛ(k)Θ(k)−1
)

≥ 0, j = 1, 2.

(B.4)

Since Θ(k)Θ(k)−1 = I, then (B.4), turns into

Θ(k)−1 − γ(k)−1
(

Q1/2
)T (

Q1/2
)

− γ(k)−1
(

R1/2Λ(k)Θ(k)−1
)T (

R1/2Λ(k)Θ(k)−1
)

−
(

Aj +BΛ(k)Θ(k)−1
)T

Θ(k)−1
(

Aj +BΛ(k)Θ(k)−1
)

≥ 0, j = 1, 2.

(B.5)

Multiplying (B.5) by (−γ(k)), it is obtained that

− γ(k)Θ(k)−1 +Q+
(

Λ(k)Θ(k)−1
)T

R
(

Λ(k)Θ(k)−1
)

+
(

Aj +BΛ(k)Θ(k)−1
)T

γ(k)Θ(k)−1
(

Aj +BΛ(k)Θ(k)−1
)

≤ 0, j = 1, 2.

(B.6)

Notice that if the inequality (B.6) is fulfilled by the vertices of the polytope

C = Co{[A1 B], [A2 B]}, it is also satisfied for all [A(λ(k + i)) B] ∈ C, i ≥ 0

[42]. Consider now, the gain F (k) that minimizes γ(k) in (5.13) and that is

defined as

F (k) = Λ(k)Θ(k)−1, (B.7)
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where Λ(k) is solution of (5.16). Reorganising (B.6), and plugging (B.7) into

(B.6), gives

(

A(λ(k + i)) +BF (k + i)
)T

γ(k + i)Θ(k + i)−1
(

A(λ(k + i)) +BF (k + i)
)

−γ(k + i)Θ(k + i)−1 + F (k + i)TRF (k + i) +Q ≤ 0,

(B.8)

that is satisfied for any [A(λ(k + i)) B] ∈ C, i ≥ 0. Replacing M(k) =

γ(k)Θ(k)−1 in (B.8), it is obtained that

(

A(λ(k + i)) +BF (k + i)
)T

M(k + i)
(

A(λ(k + i)) +BF (k + i)
)

−M(k + i) + F (k + i)TRF (k + i) +Q ≤ 0.
(B.9)

Pre and post-multiplying (B.9) by (∆x(k+ i))T and ∆x(k+ i), respectively, (B.9)

turns into

((

A(λ(k + i)) +BF (k + i)
)

∆x(k + i)
)T

M(k + i)
((

A(λ(k + i))

+BF (k + i)
)

∆x(k + i)
)

−∆x(k + i)TM(k + i)∆x(k + i)

+
(

F (k + i)∆x(k + i)
)T

R
(

F (k + i)∆x(k + i)
)

+∆x(k + i)TQ∆x(k + i) ≤ 0.

(B.10)

Notice that ∆x(k + i + 1) = (A(λ(k + i)) +BF (k + i))∆x(k + i), in virtue of

the the control law ∆u(k + i) = F (k + i)∆x(k + i). Therefore, (B.10) becomes

∆x(k + i+ 1)TM(k + i)∆x(k + i+ 1)−∆x(k + i)TM(k + i)∆x(k + i)

+ ∆u(k + i)TR∆u(k + i) + ∆x(k + i)TQ∆x(k + i) ≤ 0.
(B.11)

Using (5.23), (B.11) is rewritten as

V (∆x(k + i+ 1))− V (∆x(k + i)) + ∆u(k + i)TR∆u(k + i)

+ ∆x(k + i)TQ∆x(k + i) ≤ 0,
(B.12)
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which is equivalent to

V (∆x(k + i+ 1))− V (∆x(k + i)) ≤

−
(

∆x(k + i)TQ∆x(k + i) + ∆u(k + i)TR∆u(k + i)
)

.

(B.13)

The expression (B.13) is satisfied for all [A(λ(k + i)) B] ∈ C, i ≥ 0.

B.3 Proof of equation (5.28)

Summing (B.13) from zero to infinity, yields

∞
∑

i=0

(

V (∆x(k + i+ 1))− V (∆x(k + i))
)

≤ −
∞
∑

i=0

(

∆x(k + i)TQ∆x(k + i) + ∆u(k + i)TR∆u(k + i)
)

.

(B.14)
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The left side of (B.14) is developed as follows

∞
∑

i=0

(

V (∆x(k + i+ 1))− V (∆x(k + i))
)

=
∞
∑

i=0

V (∆x(k + i+ 1))−
∞
∑

i=0

V (∆x(k + i)),

=
∞
∑

i=0

(

∆x(k + i+ 1)TM(k + i+ 1)∆x(k + i+ 1)
)

−
∞
∑

i=0

(

∆x(k + i)TM(k + i)∆x(k + i)
)

,

=
∞
∑

i=1

(

∆x(k + i)TM(k + i)∆x(k + i)
)

−
∞
∑

i=0

(

∆x(k + i)TM(k + i)∆x(k + i)
)

,

=
∞
∑

i=1

(

∆x(k + i)TM(k + i)∆x(k + i)
)

−
(

(

∆x(k)TM(k)∆x(k)
)

+
∞
∑

i=1

∆x(k + i)TM(k + i)∆x(k + i)
)

,

= −∆x(k)TM(k)∆x(k).

(B.15)

Plugging (B.15) into (B.14), (B.14) becomes

−∆x(k)TM(k)∆x(k) ≤ −
∞
∑

i=0

(

∆x(k + i)TQ∆x(k + i)

+ ∆u(k + i)TR∆u(k + i)
)

.

(B.16)

Finally, using (5.12), (B.16) turns into

−∆x(k)TM(k)∆x(k) ≤ −J(k),

−V (∆x(k)) ≤ −J(k),

J(k) ≤ V (∆x(k)).

(B.17)
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B.4 Proof of equation (5.31)

Applying the Schur complement to (5.20), the following is obtained

Θ(k)−Λ(k)T
1

∆u2
max

Λ(k) ≥ 0. (B.18)

If Λ(k) = F (k)Θ(k) (from (5.24)) is plugged into (B.18), it turns into

Θ(k)− 1

∆u2
max

(F (k)Θ(k))TF (k)Θ(k) ≥ 0,

Θ(k)− 1

∆u2
max

F (k)TΘ(k)TF (k)Θ(k) ≥ 0.
(B.19)

Pre and post-multiplying (B.19) by (Θ(k)−1)T and Θ(k)−1, respectively, gives

(Θ(k)−1)TΘ(k)Θ(k)−1 − 1

∆u2
max

(Θ(k)−1)T (F (k)Θ(k))TF (k)Θ(k)Θ(k)−1 ≥ 0,

(Θ(k)−1)T − 1

∆u2
max

(F (k)Θ(k)Θ(k)−1)TF (k) ≥ 0,

(Θ(k)−1)T − 1

∆u2
max

F (k)TF (k) ≥ 0.

(B.20)

After pre and post-multiplying (B.20) by (∆x(k))T and ∆x(k), respectively, the

following is obtained

(∆x(k))T (Θ(k)−1)T∆x(k)− 1

∆u2
max

(∆x(k))TF (k)TF (k)∆x(k) ≥ 0,

(Θ(k)−1∆x(k))T∆x(k)− 1

∆u2
max

(F (k)∆x(k))TF (k)∆x(k) ≥ 0,

(∆x(k)TΘ(k)−1∆x(k))T − 1

∆u2
max

(F (k)∆x(k))TF (k)∆x(k) ≥ 0.

(B.21)
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Reorganising (B.21), letting ∆u(k) = F (k)∆x(k), Θ(k)−1 = 1
γ(k)

M(k), and

V (∆x(k)) = ∆xT (k)M(k)∆x(k), it is obtained that

1

∆u2
max

(F (k)∆x(k))TF (k)∆x(k) ≤ (∆x(k)TΘ(k)−1∆x(k))T ,

1

∆u2
max

(∆u(k))T∆u(k) ≤
(

∆x(k)T
1

γ(k)
M(k)∆x(k)

)T

,

1

∆u2
max

(∆u(k))T∆u(k) ≤ 1

γ(k)
(∆x(k)TM(k)∆x(k))T ,

1

∆u2
max

(∆u(k))T∆u(k) ≤ 1

γ(k)
V (∆x(k))T ,

1

∆u2
max

(∆u(k))T∆u(k) ≤ 1

γ(k)
V (∆x(k)).

(B.22)

Notice that in virtue of (5.25), the following stands

V (∆x(k)) ≤ γ(k),

1

γ(k)
V (∆x(k)) ≤ 1.

(B.23)

Therefore, using (B.23), (B.22) becomes

1

∆u2
max

(∆u(k))T∆u(k) ≤ 1

γ(k)
V (∆x(k)) ≤ 1,

(∆u(k))T∆u(k) ≤ ∆u2
max.

(B.24)

B.5 Proof of equation (5.32)

Consider the matrix inequalities (5.21) and (5.22) at time k + i, i ≥ 0, i.e.

[

∆y2maxI ⋆

(AjΘ(k + i) +BΛ(k + i))T CT Θ(k + i)

]

≥ 0, (B.25)

with j = 1, 2. Applying the Schur complement to the matrix inequality (B.25),

the following is obtained

Θ(k+i)−(AjΘ(k + i) +BΛ(k + i))T CT 1

∆y2max

C (AjΘ(k + i) +BΛ(k + i)) ≥ 0.

(B.26)
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Recall that since the inequality (B.26) is fulfilled by the vertices of the polytope

C = Co{[A1 B], [A2 B]}, it is also satisfied for all [A(λ(k + i)) B] ∈ C, i ≥ 0

[42]. Thus,

Θ(k + i)− (A(λ(k + i))Θ(k + i) +BΛ(k + i))T CT 1

∆y2max

C (A(λ(k + i))Θ(k + i) +BΛ(k + i)) ≥ 0,

(B.27)

where [A(λ(k + i)) B] ∈ C. Plugging Λ(k + i) = F (k + i)Θ(k + i) into (B.27),

gives

Θ(k + i)− (A(λ(k + i))Θ(k + i) +BF (k + i)Θ(k + i))T CT 1

∆y2max

C (A(λ(k + i))Θ(k) +BF (k)Θ(k + i)) ≥ 0,

(B.28)

which is equivalent to

Θ(k + i)− 1

∆y2max

(A(λ(k + i))Θ(k + i) +BF (k + i)Θ(k + i))T CT

C (A(λ(k))Θ(k + i) +BF (k + i)Θ(k)) ≥ 0.

(B.29)

Pre and post-multiplying (B.29) by (Θ(k + i)−1)T and Θ(k + i)−1, respectively,

gives

(Θ(k + i)−1)TΘ(k + i)Θ(k + i)−1

− 1

∆y2max

(Θ(k + i)−1)T (A(λ(k))Θ(k + i) +BF (k + i)Θ(k + i))T CT

C (A(λ(k + i))Θ(k + i) +BF (k + i)Θ(k + i))Θ(k + i)−1 ≥ 0,

(B.30)

which can be rewritten as

(Θ(k + i)−1)T − 1

∆y2max

(A(λ(k + i)) +BF (k + i))T CT

C (A(λ(k + i)) +BF (k + i)) ≥ 0.

(B.31)
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Pre and post-multiplying (B.31) by (∆x(k + i))T and ∆x(k + i), respectively,

gives

(∆x(k + i))T (Θ(k + i)−1)T∆x(k + i)

− 1

∆y2max

(∆x(k + i))T (A(λ(k + i)) +BF (k + i))T CT

C (A(λ(k + i)) +BF (k))∆x(k + i) ≥ 0.

(B.32)

Expression (B.32) is equivalent to

(∆x(k + i))T (Θ(k + i)−1)T∆x(k + i)

− 1

∆y2max

(

(A(λ(k + i)) +BF (k + i))∆x(k + i)
)T

CT

C
(

(A(λ(k + i)) +BF (k + i))∆x(k + i)
)

≥ 0.

(B.33)

Recall that (A(λ(k + i)) +BF (k))∆x(k+ i) = ∆x(k+ i+1). Therefore (B.33),

turns into

(∆x(k+i))T (Θ(k+i)−1)T∆x(k+i)− 1

∆y2max

(∆x(k + i+ 1))T CTC∆x(k+i+1) ≥ 0,

(B.34)

which is equivalent to

(∆x(k+i))T (Θ(k+i)−1)T∆x(k+i)− 1

∆y2max

(C∆x(k + i+ 1))T C∆x(k+i+1) ≥ 0.

(B.35)

Since ∆y(k + i+ 1) = C∆x(k + i+ 1), equation (B.35) becomes

(∆x(k + i))T (Θ(k)−1)T∆x(k + i)− 1

∆y2max

(∆y(k + i+ 1))T ∆y(k + i+ 1) ≥ 0.

(B.36)

Reorganizing (B.36), gives

1

∆y2max

(∆y(k + i+ 1))T ∆y(k + i+ 1) ≤ (∆x(k + i))T (Θ(k + i)−1)T∆x(k + i),

(B.37)
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which is equivalent to

1

∆y2max

(∆y(k + i+ 1))T ∆y(k+i+1) ≤ (∆x(k+i)TΘ(k+i)−1∆x(k+i))T . (B.38)

SinceΘ(k+i)−1 = 1
γ(k+i)

M(k+i) and V (∆x(k+i)) = ∆xT (k+i)M(k+i)∆x(k+i),

at time k + i, (B.38) turns into

1

∆y2max

(∆y(k + i+ 1))T ∆y(k + i+ 1) ≤
(

∆x(k + i)T
1

γ(k + i)
M(k + i)∆x(k + i)

)T

=
1

γ(k + i)

(

∆x(k + i)TM(k + i)∆x(k + i)
)T

,

=
1

γ(k + i)
(V (∆x(k + i)))T ,

=
1

γ(k + i)
V (∆x(k + i)).

(B.39)

Plugging (B.23) into (B.39), gives

1

∆y2max

(∆y(k + i+ 1))T ∆y(k + i+ 1) ≤ 1,

(∆y(k + i+ 1))T ∆y(k + i+ 1) ≤ ∆y2max,

(B.40)

with i ≥ 0. Thus,

(∆y(k + i))T ∆y(k + i) ≤ ∆y2max, ∀i ≥ 1. (B.41)
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Appendix C

Proofs of Chapter 6

C.1 Proof of equation (6.13)

Consider the deceleration dynamics (6.12), i.e.

dx2(t)

dt
= ax2(t)

2 + b(t)x2(t) + c(t). (C.1)

Notice that (C.1) can be rewritten as

dx2(t)
dt

ax2(t)2 + b(t)x2(t) + c(t)
= 1,

dx2(t)

ax2(t)2 + b(t)x2(t) + c(t)
= dt.

(C.2)

If (C.2) is integrated in an interval of time τ = [t0, t], in which b(τ)
∣

∣

∣

τ=t

τ=t0
= b and

c(τ)
∣

∣

∣

τ=t

τ=t0
= c, then

∫ y=x2(t)

y=x2(t0)

dy

ay2 + by + c
=

∫ τ=t

τ=t0

dτ, (C.3)

∫ x2(t)

x2(t0)

dy

ay2 + by + c
= t− t0. (C.4)

Factorizing ay2 + by + c, it is obtained that

ay2 + by + c = a

(

y − −b+
√
b2 − 4ac

2a

)(

y − −b−
√
b2 − 4ac

2a

)

. (C.5)
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Plugging (C.5) into (C.4), the left side of (C.4) becomes

∫ x2(t)

x2(t0)

dy

ay2 + by + c
=

1√
b2 − 4 a c

(

log

(

2 a x2(t)−
√
b2 − 4 a c+ b

2 a x2(t) +
√
b2 − 4 a c+ b

)

− log

(

2 a x2(t0)−
√
b2 − 4 a c+ b

2 a x2(t0) +
√
b2 − 4 a c+ b

))

.

(C.6)

Consider the time instants t0, t1 and t2, in which the measurements of the

velocity x2(t0), x2(t1) and x2(t2) are performed. It is assumed that b(t0) = b(t1) =

b(t2) = b and c(t0) = c(t1) = c(t2) = c. Additionally t0, t1 and t2 are uniformly

spaced, i.e. t2 − t1 = t1 − t0. In virtue of (C.6), it is obtained that

log

(

2 a x2(t1)−
√
b2 − 4 a c+ b

2 a x2(t1) +
√
b2 − 4 a c+ b

)

− log

(

2 a x2(t0)−
√
b2 − 4 a c+ b

2 a x2(t0) +
√
b2 − 4 a c+ b

)

= log

(

2 a x2(t2)−
√
b2 − 4 a c+ b

2 a x2(t2) +
√
b2 − 4 a c+ b

)

− log

(

2 a x2(t1)−
√
b2 − 4 a c+ b

2 a x2(t1) +
√
b2 − 4 a c+ b

)

.

(C.7)

Recalling that for any a, b, c, d > 0,

log(a)− log(b) = log(c)− log(d) ⇔ log(a/b) = log(c/d) ⇔ ad = bc, (C.8)

then (C.7) is equivalent to

2 a x2(t1)−
√
b2 − 4 a c+ b

2 a x2(t1) +
√
b2 − 4 a c+ b

× 2 a x2(t1)−
√
b2 − 4 a c+ b

2 a x2(t1) +
√
b2 − 4 a c+ b

=
2 a x2(t2)−

√
b2 − 4 a c+ b

2 a x2(t2) +
√
b2 − 4 a c+ b

× 2 a x2(t0)−
√
b2 − 4 a c+ b

2 a x2(t0) +
√
b2 − 4 a c+ b

.

(C.9)

Introducing the auxiliary variables α̂, β̂ and γ̂, defined as follows

α̂ = 2a,

β̂ =
√
b2 − 4 a c+ b,

γ̂ = −
√
b2 − 4 a c+ b,

(C.10)
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the expression (C.9) can be rewritten as

(

α̂x2(t1) + γ̂

α̂x2(t1) + β̂

)2

=
α̂x2(t2) + γ̂

α̂x2(t2) + β̂
× α̂x2(t0) + γ̂

α̂x2(t0) + β̂
. (C.11)

The expression (C.11) is equivalent to

(α̂x2(t1) + γ̂)2
(

α̂x2(t2) + β̂
)(

α̂x2(t0) + β̂
)

=
(

α̂x2(t1) + β̂
)2

(α̂x2(t0) + γ̂) (α̂x2(t2) + γ̂) .

(C.12)

Simplifying (C.12), it becomes

[

x2(t1)
2 (x2(t0) + x2(t2))− 2x2(t0)x2(t1)x2(t2)

]

α̂2

+
(

x2(t1)
2 + x2(t0)x2(t2)

)

α̂
(

β̂ + γ̂
)

+ [2x2(t1)− (x2(t0) + x2(t2))] β̂γ̂ = 0.

(C.13)

Notice that from (C.10), α̂, β̂ and γ̂ verify

α̂2 = 4a2,

α̂
(

β̂ + γ̂
)

= 4ab,

β̂γ̂ = 4ac.

(C.14)

Therefore, plugging (C.14) into (C.13), gives

[

x2(t1)
2 (x2(t0) + x2(t2))− 2x2(t0)x2(t1)x2(t2)

]

4a2

+
(

x2(t1)
2 + x2(t0)x2(t2)

)

4ab+ [2x2(t1)− (x2(t0) + x2(t2))] 4ac = 0.

(C.15)

Factorizing 4a, (C.15) becomes

[

x2(t1)
2 (x2(t0) + x2(t2))− 2x2(t0)x2(t1)x2(t2)

]

a

+
(

x2(t1)
2 + x2(t0)x2(t2)

)

b+ [2x2(t1)− (x2(t0) + x2(t2))] c = 0.
(C.16)
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✭P❉▲❋✮✱ ❈♦♠♠❛♥❞❡ ❛❞❛♣t❛t✐✈❡✱ ❈♦♠♠❛♥❞❡ r♦❜✉st❡✳
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